Hybrid Koopman $C^*$–formalism and the hybrid quantum–classical master equation*
Resumen: Based on Koopman formalism for classical statistical mechanics, we propose a formalism to define hybrid quantum–classical dynamical systems by defining (outer) automorphisms of the $C^*$ algebra of hybrid operators and realizing them as linear transformations on the space of hybrid states. These hybrid states are represented as density matrices on the Hilbert space obtained from the hybrid $C^*$–algebra by the GNS construction. We also classify all possible dynamical systems which are unitary and obtain the possible hybrid Hamiltonian operators.
Idioma: Inglés
DOI: 10.1088/1751-8121/aceed5
Año: 2023
Publicado en: Journal of Physics A-Mathematical and Theoretical 56, 37 (2023), 374001 [21 pp.]
ISSN: 1751-8113

Factor impacto JCR: 2.0 (2023)
Categ. JCR: PHYSICS, MULTIDISCIPLINARY rank: 47 / 110 = 0.427 (2023) - Q2 - T2
Categ. JCR: PHYSICS, MATHEMATICAL rank: 18 / 60 = 0.3 (2023) - Q2 - T1

Factor impacto CITESCORE: 4.1 - Statistics and Probability (Q1) - Mathematical Physics (Q1) - Statistical and Nonlinear Physics (Q2) - Physics and Astronomy (all) (Q2) - Modeling and Simulation (Q2)

Factor impacto SCIMAGO: 0.769 - Physics and Astronomy (miscellaneous) (Q1) - Modeling and Simulation (Q2) - Statistics and Probability (Q2) - Statistical and Nonlinear Physics (Q2) - Mathematical Physics (Q2)

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2021-123251NB-I00
Financiación: info:eu-repo/grantAgreement/ES/DGA-CUS/581-2020
Financiación: info:eu-repo/grantAgreement/ES/DGA/E48-23R
Financiación: info:eu-repo/grantAgreement/ES/DGA-IIU/1408-2018
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Física Teórica (Dpto. Física Teórica)

Rights Reserved All rights reserved by journal editor


Exportado de SIDERAL (2024-07-31-10:07:31)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2023-10-27, last modified 2024-07-31


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)