On the stability of the representation of finite rank operators
Resumen: The stability of the representation of finite rank operators in terms of a basis is analyzed. A conditioning is introduced as a measure of the stability properties. This conditioning improves some other conditionings because it is closer to the Lebesgue function. Improved bounds for the conditioning of the Fourier sums with respect to an orthogonal basis are obtained, in particular, for Legendre, Chebyshev, and disk polynomials. The Lagrange and Newton formulae for the interpolating polynomial are also considered.
Idioma: Inglés
DOI: 10.1007/s10444-023-10057-9
Año: 2023
Publicado en: ADVANCES IN COMPUTATIONAL MATHEMATICS 49, 4 (2023), 52 [33 pp.]
ISSN: 1019-7168

Factor impacto JCR: 1.7 (2023)
Categ. JCR: MATHEMATICS, APPLIED rank: 83 / 332 = 0.25 (2023) - Q1 - T1
Factor impacto CITESCORE: 3.0 - Computational Mathematics (Q2) - Applied Mathematics (Q2)

Factor impacto SCIMAGO: 0.995 - Computational Mathematics (Q1) - Applied Mathematics (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E41-23R
Financiación: info:eu-repo/grantAgreement/ES/MCIU-AEI/PGC2018-096321-B-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN/RED2022-134176-T
Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Rights Reserved All rights reserved by journal editor


Exportado de SIDERAL (2024-11-22-11:57:20)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Matemática Aplicada



 Record created 2023-11-16, last modified 2024-11-25


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)