A Machine Learning Approach Investigating Consumers’ Familiarity with and Involvement in the Just Noticeable Color Difference and Cured Color Characterization Scale
Resumen: The aim of this study was to elucidate the relations between the visual color perception and the instrumental color of dry-cured ham, with a specific focus on determining the Just Noticeable Color Difference (JNCD). Additionally, we studied the influence of consumer involvement and familiarity on color-related associations and JNCD. Slices of ham were examined to determine their instrumental color and photos were taken. Consumers were surveyed about color scoring and matching of the pictures; they were also asked about their involvement in food, familiarity with cured ham, and sociodemographic characteristics. Consumers were clustered according to their level of involvement and the JNCD was calculated for the clusters. An interpretable machine learning algorithm was used to relate the visual appraisal to the instrumental color. A JNCD of ΔEab* = 6.2 was established, although it was lower for younger people. ΔEab* was also influenced by the involvement of consumers. The machine-learning algorithm results were better than those obtained via multiple linear regressions when consumers’ psychographic characteristics were included. The most important color variables of the algorithm were L* and hab. The findings of this research underscore the impact of consumers’ involvement and familiarity with dry-cured ham on their perception of color.
Idioma: Inglés
DOI: 10.3390/foods12244426
Año: 2023
Publicado en: Foods 12, 24 (2023), 4426 [16 pp.]
ISSN: 2304-8158

Factor impacto JCR: 4.7 (2023)
Categ. JCR: FOOD SCIENCE & TECHNOLOGY rank: 38 / 173 = 0.22 (2023) - Q1 - T1
Factor impacto CITESCORE: 7.4 - Health (social science) (Q1) - Health Professions (miscellaneous) (Q1) - Plant Science (Q1) - Food Science (Q1) - Microbiology (Q2)

Factor impacto SCIMAGO: 0.87 - Food Science (Q1) - Health (social science) (Q1) - Plant Science (Q1) - Health Professions (miscellaneous) (Q1) - Microbiology (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/A17-20R
Financiación: info:eu-repo/grantAgreement/ES/MINECO/AGL2016-78532-R
Tipo y forma: Article (Published version)
Área (Departamento): Área Producción Animal (Dpto. Produc.Animal Cienc.Ali.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-11-22-11:59:17)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Producción Animal



 Record created 2023-12-21, last modified 2024-11-25


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)