Spectral sets of generalized Hausdorff matrices on spaces of holomorphic functions on D
Resumen: Here, we study a family of bounded operators H, acting on Banach spaces of holomorphic functions X→O(D), which are subordinated in terms of a C0--semigroup of weighted composition operators (vtCϕt ), i.e.,H= ∞ 0 vtCϕt dν(t) in the strong sense for some Borel measure ν. This family of operators extends the so-called generalized Hausdorff operators. Here, we obtain the spectrum, point spectrum and essential spectrum of H under mild assumptions on (vtCϕt ),ν and X. In particular, we obtain these spectral sets for a wide family of generalized Hausdorff operators acting on Hardy spaces, weighted Bergman spaces, weighted Dirichlet spaces and little Korenblum classes. The description for the spectra of the infinitesimal generator of (vtCϕt) is the key for our findings.
Idioma: Inglés
DOI: 10.1016/j.jfa.2023.110298
Año: 2024
Publicado en: JOURNAL OF FUNCTIONAL ANALYSIS 286, 6 (2024), 110298 [35 pp.]
ISSN: 0022-1236

Tipo y forma: Article (PostPrint)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2024-02-19-13:52:57)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático



 Record created 2024-01-09, last modified 2024-02-19


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)