000129777 001__ 129777
000129777 005__ 20240219135523.0
000129777 0247_ $$2doi$$a10.1016/j.jfa.2023.110298
000129777 0248_ $$2sideral$$a136096
000129777 037__ $$aART-2024-136096
000129777 041__ $$aeng
000129777 100__ $$0(orcid)0000-0003-2453-7841$$aAbadias, Luciano$$uUniversidad de Zaragoza
000129777 245__ $$aSpectral sets of generalized Hausdorff matrices on spaces of holomorphic functions on D
000129777 260__ $$c2024
000129777 5060_ $$aAccess copy available to the general public$$fUnrestricted
000129777 5203_ $$aHere, we study a family of bounded operators H, acting on Banach spaces of holomorphic functions X→O(D), which are subordinated in terms of a C0--semigroup of weighted composition operators (vtCϕt ), i.e.,H= ∞ 0 vtCϕt dν(t) in the strong sense for some Borel measure ν. This family of operators extends the so-called generalized Hausdorff operators. Here, we obtain the spectrum, point spectrum and essential spectrum of H under mild assumptions on (vtCϕt ),ν and X. In particular, we obtain these spectral sets for a wide family of generalized Hausdorff operators acting on Hardy spaces, weighted Bergman spaces, weighted Dirichlet spaces and little Korenblum classes. The description for the spectra of the infinitesimal generator of (vtCϕt) is the key for our findings.
000129777 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000129777 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000129777 700__ $$0(orcid)0000-0001-8546-5883$$aOliva-Maza, Jesús
000129777 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático
000129777 773__ $$g286, 6 (2024), 110298 [35 pp.]$$pJ. funct. anal.$$tJOURNAL OF FUNCTIONAL ANALYSIS$$x0022-1236
000129777 8564_ $$s603346$$uhttps://zaguan.unizar.es/record/129777/files/texto_completo.pdf$$yPostprint
000129777 8564_ $$s1498894$$uhttps://zaguan.unizar.es/record/129777/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000129777 909CO $$ooai:zaguan.unizar.es:129777$$particulos$$pdriver
000129777 951__ $$a2024-02-19-13:52:57
000129777 980__ $$aARTICLE