A Porphyrin Spin Qubit and Its 2D Framework Nanosheets

Urtizberea, A. ; Natividad, E. (Universidad de Zaragoza) ; Alonso, P.J. (Universidad de Zaragoza) ; Andrés, M.A. (Universidad de Zaragoza) ; Gascón, I. (Universidad de Zaragoza) ; Goldmann, M. ; Roubeau, O. (Universidad de Zaragoza)
A Porphyrin Spin Qubit and Its 2D Framework Nanosheets
Resumen: Molecular spin qubits have been shown to reach sufficiently long quantum coherence times to envision their use as hardware in quantum processors. These will however require their implementation in hybrid solid-state devices for which the controlled localization and homogeneous orientation of the molecular qubits will be necessary. An alternative to isolated molecules that can ensure these key aspects is 2D framework in which the qubit would act as node. In this work, it is demonstrated that the isolated metalloporphyrin [Cu(H4TCPP)] molecule is a potential spin qubit, and maintains similar quantum coherence as node in a 2D [{CuTCPP}Zn2(H2O)2] metal–organic framework. Mono- and multilayer deposits of nanosheets of a similar 2D framework are then successfully formed following a modular method based on Langmuir–Schaefer conditions. The orientation of the {CuTCPP} qubit nodes in these nanosheets is homogeneous parallel to the substrate. These nanosheets are also formed with a control over the qubit concentration, i.e., by dilution with the unmetallated porphyrin. Eventually, 2D nanosheets are formed in situ directly on a substrate, through a simple protocol devised to reproduce the Langmuir–Schaefer conditions locally. Altogether these studies show that 2D spin qubit frameworks are ideal components to develop a hybrid quantum computing architecture.
Idioma: Inglés
DOI: 10.1002/adfm.201801695
Año: 2018
Publicado en: Advanced Functional Materials 28, 31 (2018), 1801695 [15 pp]
ISSN: 1616-301X

Factor impacto JCR: 15.621 (2018)
Categ. JCR: CHEMISTRY, PHYSICAL rank: 5 / 147 = 0.034 (2018) - Q1 - T1
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 15 / 293 = 0.051 (2018) - Q1 - T1
Categ. JCR: NANOSCIENCE & NANOTECHNOLOGY rank: 7 / 94 = 0.074 (2018) - Q1 - T1
Categ. JCR: CHEMISTRY, MULTIDISCIPLINARY rank: 11 / 172 = 0.064 (2018) - Q1 - T1
Categ. JCR: PHYSICS, CONDENSED MATTER rank: 5 / 68 = 0.074 (2018) - Q1 - T1
Categ. JCR: PHYSICS, APPLIED rank: 6 / 148 = 0.041 (2018) - Q1 - T1

Factor impacto SCIMAGO: 5.646 - Biomaterials (Q1) - Condensed Matter Physics (Q1) - Nanoscience and Nanotechnology (Q1) - Electronic, Optical and Magnetic Materials (Q1) - Electrochemistry (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E31-17R
Financiación: info:eu-repo/grantAgreement/ES/MINECO/CTQ2015-64486-R
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MAT2014-53961-R
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MAT2015-70868-ERC
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MAT2016-78257-R
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MAT2017-86826-R
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Química Física (Dpto. Química Física)
Área (Departamento): Área Cienc.Mater. Ingen.Metal. (Dpto. Ciencia Tecnol.Mater.Fl.)
Área (Departamento): Área Física Materia Condensada (Dpto. Física Materia Condensa.)


Derechos Reservados Derechos reservados por el editor de la revista


Exportado de SIDERAL (2024-01-12-14:08:04)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2024-01-12, última modificación el 2024-01-12


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)