Optimal coupling of Ho W<sub>10 molecular magnets to superconducting circuits near spin clock transitions
Financiación H2020 / H2020 Funds
Resumen: A central goal in quantum technologies is to maximize GT2, where G stands for the coupling of a qubit to control and readout signals and T2 is the qubit’s coherence time. This is challenging, as increasing G (e.g., by coupling the qubit more strongly to external stimuli) often leads to deleterious effects on T2. Here, we study the coupling of pure and magnetically diluted crystals of Ho W10 magnetic clusters to microwave superconducting coplanar waveguides. Absorption lines give a broadband picture of the magnetic energy level scheme and, in particular, confirm the existence of level anticrossings at equidistant magnetic fields determined by the combination of crystal field and hyperfine interactions. Such “spin clock transitions” are known to shield the electronic spins against magnetic field fluctuations. The analysis of the microwave transmission shows that the spin-photon coupling also becomes maximum at these transitions. The results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
Idioma: Inglés
DOI: 10.1103/PhysRevApplied.20.044070
Año: 2023
Publicado en: Physical Review Applied 20 (2023), 044070 [13 pp.]
ISSN: 2331-7019

Factor impacto JCR: 3.8 (2023)
Categ. JCR: PHYSICS, APPLIED rank: 54 / 179 = 0.302 (2023) - Q2 - T1
Factor impacto CITESCORE: 7.8 - Physics and Astronomy (all) (Q1)

Factor impacto SCIMAGO: 1.335 - Physics and Astronomy (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E09-17R-Q-MAD
Financiación: info:eu-repo/grantAgreement/ES/DGA/PT1001
Financiación: info:eu-repo/grantAgreement/EC/HORIZON EUROPE/101064707/EU/Spin-based quantum memory coupled to superconducting qubits in a Hybrid Quantum Architecture/HyQuArch
Financiación: info:eu-repo/grantAgreement/EC/H2020/ 788222/EU/Molecule-induced control over 2D Materials/Mol-2D
Financiación: info:eu-repo/grantAgreement/EC/H2020/647301/EU/A Chemical Approach to Molecular Spin Qubits: Decoherence and Organisation of Rare Earth Single Ion Magnets/DECRESIM
Financiación: info:eu-repo/grantAgreement/EC/H2020/862893/EU/Molecular spin qudits offering new hope for quantum computing/FATMOLS
Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI/PRTR-C17.I1
Financiación: info:eu-repo/grantAgreement/ES/MICINN/CEX2019-000919-M
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2019-105552RB-C41
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2019-105552RB-C44
Financiación: info:eu-repo/grantAgreement/ES/MICINN/P2018-NMT-4291
Financiación: info:eu-repo/grantAgreement/ES/MICINN/RTI2018-096075-A-C21
Financiación: info:eu-repo/grantAgreement/ES/MICINN/TEC2SPACE-LM
Financiación: info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131447B-C21
Financiación: info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131447B-C22
Tipo y forma: Article (Published version)
Área (Departamento): Área Física Aplicada (Dpto. Física Aplicada)
Exportado de SIDERAL (2025-03-07-09:38:52)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > fisica_aplicada



 Notice créée le 2024-01-12, modifiée le 2025-03-07


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)