Resumen: In this paper we study properties of complex plane projective curves from a geometric point of view. We focus our attention on properties of conics. We find that Gauss curvature determines a conic up to a hermitian transformation preserving the Fubini-Study metric of the complex projective plane and we discuss some other geometric properties of the conics. Finally we study the deformation of smooth conics onto pair of lines and the classification of cubics up to hermitian transformations. Idioma: Inglés DOI: 10.14492/hokmj/2020-422 Año: 2023 Publicado en: HOKKAIDO MATHEMATICAL JOURNAL 52, 1 (2023), 23-40 ISSN: 0385-4035 Factor impacto JCR: 0.6 (2023) Categ. JCR: MATHEMATICS rank: 263 / 489 = 0.538 (2023) - Q3 - T2 Factor impacto CITESCORE: 1.0 - Mathematics (all) (Q3)