Differential geometry of complex projective plane conics
Resumen: In this paper we study properties of complex plane projective curves from a geometric point of view. We focus our attention on properties of conics. We find that Gauss curvature determines a conic up to a hermitian transformation preserving the Fubini-Study metric of the complex projective plane and we discuss some other geometric properties of the conics. Finally we study the deformation of smooth conics onto pair of lines and the classification of cubics up to hermitian transformations.
Idioma: Inglés
DOI: 10.14492/hokmj/2020-422
Año: 2023
Publicado en: HOKKAIDO MATHEMATICAL JOURNAL 52, 1 (2023), 23-40
ISSN: 0385-4035

Factor impacto JCR: 0.6 (2023)
Categ. JCR: MATHEMATICS rank: 264 / 490 = 0.539 (2023) - Q3 - T2
Factor impacto CITESCORE: 1.0 - Mathematics (all) (Q3)

Factor impacto SCIMAGO: 0.246 - Mathematics (miscellaneous) (Q3)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E22-20R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2016-76868-C2-2-P
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2020-114750GB-C31/AEI/10.13039/501100011033
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2020-118425GB-I00
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas)

Rights Reserved All rights reserved by journal editor


Exportado de SIDERAL (2024-11-22-12:07:14)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2024-01-22, last modified 2024-11-25


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)