000130521 001__ 130521
000130521 005__ 20241125101130.0
000130521 0247_ $$2doi$$a10.1016/j.chaos.2023.113240
000130521 0248_ $$2sideral$$a132535
000130521 037__ $$aART-2023-132535
000130521 041__ $$aeng
000130521 100__ $$aDrubi, Fátima
000130521 245__ $$aConnecting chaotic regions in the Coupled Brusselator System
000130521 260__ $$c2023
000130521 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130521 5203_ $$aA family of vector fields describing two Brusselators linearly coupled by diffusion is considered. This model is a well-known example of how identical oscillatory systems can be coupled with a simple mechanism to create chaotic behavior. In this paper we discuss the relevance and possible relation of two chaotic regions. One of them is located using numerical techniques. The another one was first predicted by theoretical results and later studied via numerical and continuation techniques. As a conclusion, under the constrains of our exploration, both regions are not connected and, moreover, the former one has a big size, whereas the later one is quite small and hence, it might not be detected without the support of theoretical results. Our analysis includes a detailed analysis of singularities and local bifurcations that permits to provide a global parametric study of the system.
000130521 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2021-122961NB-I00$$9info:eu-repo/grantAgreement/ES/DGA/E22-20R$$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E24-17R$$9info:eu-repo/grantAgreement/ES/DGA/LMP124-18$$9info:eu-repo/grantAgreement/ES/MCIU/FPU20-04039$$9info:eu-repo/grantAgreement/ES/MICINN/PGC2018-096026-B-I00$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2020-113052GB-I00
000130521 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000130521 590__ $$a5.3$$b2023
000130521 592__ $$a1.349$$b2023
000130521 591__ $$aPHYSICS, MATHEMATICAL$$b2 / 60 = 0.033$$c2023$$dQ1$$eT1
000130521 593__ $$aApplied Mathematics$$c2023$$dQ1
000130521 591__ $$aMATHEMATICS, INTERDISCIPLINARY APPLICATIONS$$b7 / 135 = 0.052$$c2023$$dQ1$$eT1
000130521 593__ $$aMathematical Physics$$c2023$$dQ1
000130521 591__ $$aPHYSICS, MULTIDISCIPLINARY$$b18 / 112 = 0.161$$c2023$$dQ1$$eT1
000130521 593__ $$aStatistical and Nonlinear Physics$$c2023$$dQ1
000130521 593__ $$aPhysics and Astronomy (miscellaneous)$$c2023$$dQ1
000130521 593__ $$aMathematics (miscellaneous)$$c2023$$dQ1
000130521 594__ $$a13.2$$b2023
000130521 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130521 700__ $$0(orcid)0000-0002-4802-2511$$aMayora Cebollero, Ana$$uUniversidad de Zaragoza
000130521 700__ $$0(orcid)0000-0002-3431-0926$$aMayora Cebollero, Carmen$$uUniversidad de Zaragoza
000130521 700__ $$aIbáñez, Santiago
000130521 700__ $$0(orcid)0000-0001-9868-9368$$aJover Galtier, Jorge Alberto$$uUniversidad de Zaragoza
000130521 700__ $$0(orcid)0000-0002-1184-5901$$aLozano, Álvaro$$uUniversidad de Zaragoza
000130521 700__ $$aPérez, Lucía
000130521 700__ $$0(orcid)0000-0002-8089-343X$$aBarrio, Roberto$$uUniversidad de Zaragoza
000130521 7102_ $$12006$$2440$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Geometría y Topología
000130521 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000130521 773__ $$g169 (2023), 113240 [14 pp.]$$pChaos, solitons fractals$$tChaos, Solitons and Fractals$$x0960-0779
000130521 8564_ $$s10095480$$uhttps://zaguan.unizar.es/record/130521/files/texto_completo.pdf$$yPostprint
000130521 8564_ $$s1349510$$uhttps://zaguan.unizar.es/record/130521/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000130521 909CO $$ooai:zaguan.unizar.es:130521$$particulos$$pdriver
000130521 951__ $$a2024-11-22-11:58:43
000130521 980__ $$aARTICLE