000130521 001__ 130521 000130521 005__ 20241125101130.0 000130521 0247_ $$2doi$$a10.1016/j.chaos.2023.113240 000130521 0248_ $$2sideral$$a132535 000130521 037__ $$aART-2023-132535 000130521 041__ $$aeng 000130521 100__ $$aDrubi, Fátima 000130521 245__ $$aConnecting chaotic regions in the Coupled Brusselator System 000130521 260__ $$c2023 000130521 5060_ $$aAccess copy available to the general public$$fUnrestricted 000130521 5203_ $$aA family of vector fields describing two Brusselators linearly coupled by diffusion is considered. This model is a well-known example of how identical oscillatory systems can be coupled with a simple mechanism to create chaotic behavior. In this paper we discuss the relevance and possible relation of two chaotic regions. One of them is located using numerical techniques. The another one was first predicted by theoretical results and later studied via numerical and continuation techniques. As a conclusion, under the constrains of our exploration, both regions are not connected and, moreover, the former one has a big size, whereas the later one is quite small and hence, it might not be detected without the support of theoretical results. Our analysis includes a detailed analysis of singularities and local bifurcations that permits to provide a global parametric study of the system. 000130521 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2021-122961NB-I00$$9info:eu-repo/grantAgreement/ES/DGA/E22-20R$$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E24-17R$$9info:eu-repo/grantAgreement/ES/DGA/LMP124-18$$9info:eu-repo/grantAgreement/ES/MCIU/FPU20-04039$$9info:eu-repo/grantAgreement/ES/MICINN/PGC2018-096026-B-I00$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2020-113052GB-I00 000130521 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/ 000130521 590__ $$a5.3$$b2023 000130521 592__ $$a1.349$$b2023 000130521 591__ $$aPHYSICS, MATHEMATICAL$$b2 / 60 = 0.033$$c2023$$dQ1$$eT1 000130521 593__ $$aApplied Mathematics$$c2023$$dQ1 000130521 591__ $$aMATHEMATICS, INTERDISCIPLINARY APPLICATIONS$$b7 / 135 = 0.052$$c2023$$dQ1$$eT1 000130521 593__ $$aMathematical Physics$$c2023$$dQ1 000130521 591__ $$aPHYSICS, MULTIDISCIPLINARY$$b18 / 112 = 0.161$$c2023$$dQ1$$eT1 000130521 593__ $$aStatistical and Nonlinear Physics$$c2023$$dQ1 000130521 593__ $$aPhysics and Astronomy (miscellaneous)$$c2023$$dQ1 000130521 593__ $$aMathematics (miscellaneous)$$c2023$$dQ1 000130521 594__ $$a13.2$$b2023 000130521 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000130521 700__ $$0(orcid)0000-0002-4802-2511$$aMayora Cebollero, Ana$$uUniversidad de Zaragoza 000130521 700__ $$0(orcid)0000-0002-3431-0926$$aMayora Cebollero, Carmen$$uUniversidad de Zaragoza 000130521 700__ $$aIbáñez, Santiago 000130521 700__ $$0(orcid)0000-0001-9868-9368$$aJover Galtier, Jorge Alberto$$uUniversidad de Zaragoza 000130521 700__ $$0(orcid)0000-0002-1184-5901$$aLozano, Álvaro$$uUniversidad de Zaragoza 000130521 700__ $$aPérez, Lucía 000130521 700__ $$0(orcid)0000-0002-8089-343X$$aBarrio, Roberto$$uUniversidad de Zaragoza 000130521 7102_ $$12006$$2440$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Geometría y Topología 000130521 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada 000130521 773__ $$g169 (2023), 113240 [14 pp.]$$pChaos, solitons fractals$$tChaos, Solitons and Fractals$$x0960-0779 000130521 8564_ $$s10095480$$uhttps://zaguan.unizar.es/record/130521/files/texto_completo.pdf$$yPostprint 000130521 8564_ $$s1349510$$uhttps://zaguan.unizar.es/record/130521/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000130521 909CO $$ooai:zaguan.unizar.es:130521$$particulos$$pdriver 000130521 951__ $$a2024-11-22-11:58:43 000130521 980__ $$aARTICLE