Modelling commuting time in the US: Bootstrapping techniques to avoid overfitting
Resumen: The research on commuting has emerged in recent decades, but the issue of whether the empirical techniques used are appropriate has not been analysed. Thus, results from prior research could be based on non-accurate models, leading to misleading conclusions. We apply an algorithmic approach based on bootstrapping, variable selection, and mean absolute prediction errors, which is designed to avoid overfitting. Using the American Time Use Survey, we find that models with a reduced set of explanatory variables have similar accuracy to standard econometric models. Our results shed light on the importance of determining whether models can be overfitted.
Idioma: Inglés
DOI: 10.1111/pirs.12424
Año: 2019
Publicado en: Papers in Regional Science 98, 4 (2019), 1667-1684
ISSN: 1056-8190

Factor impacto JCR: 2.22 (2019)
Categ. JCR: GEOGRAPHY rank: 37 / 84 = 0.44 (2019) - Q2 - T2
Categ. JCR: ECONOMICS rank: 96 / 371 = 0.259 (2019) - Q2 - T1
Categ. JCR: REGIONAL & URBAN PLANNING rank: 23 / 39 = 0.59 (2019) - Q3 - T2
Categ. JCR: ENVIRONMENTAL STUDIES rank: 68 / 123 = 0.553 (2019) - Q3 - T2

Factor impacto SCIMAGO: 0.91 - Geography, Planning and Development (Q1) - Environmental Science (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/S32-17R
Tipo y forma: Article (Published version)
Área (Departamento): Área Fund. Análisis Económico (Dpto. Análisis Económico)
Exportado de SIDERAL (2024-01-30-14:06:34)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos



 Notice créée le 2024-01-30, modifiée le 2024-01-30


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)