Resumen: The Little Ice Age (LIA) is known as one of the coldest stages of the Holocene. Most records from the Northern Hemisphere show evidence of significantly colder conditions during the LIA, which in some cases had substantial socio-economic consequences. In this study we investigated the magnitude and timing of climate variability during the LIA in the mountains of the Iberian Peninsula, based on a wide range of natural records (including from glacial, periglacial, and lacustrine/peatland areas; fluvial/alluvial deposits; speleothems; and tree rings), historical documents, and early instrument data. The onset of the LIA commenced in approximately CE 1300, and cold conditions with alternating moisture regimes persisted until approximately CE 1850; the environmental responses ranged from rapid (e.g. tree rings) to delayed (e.g. glaciers). The colder climate of the LIA was accompanied by severe droughts, floods, and cold/heat waves that showed significant spatio-temporal variation across the Iberian mountains. Several phases within the LIA have been detected, including (a) 1300–1480: increasing cooling with moderate climate oscillations; (b) 1480–1570: relatively warmer conditions; (c) 1570–1620: gradual cooling; (d) 1620–1715: coldest climate period of the LIA, particularly during the Maunder Minimum, with temperatures approximately 2 °C below those at present; (e) 1715–1760: warmer temperatures and a low frequency of extreme events; (f) 1760–1800: climate deterioration and more climate extremes (i.e. cold and heat waves, floods and droughts); (g) 1800–1850: highly variable climate conditions alternating with stability (1800–1815), extreme events (1815–1835), and a slight trend of warming associated with intense hydrometeorological events (1835–1850); (h) since 1850: a gradual staggered increase in temperature of approximately 1 °C. Post-LIA warming has led to substantial changes in geo-ecological dynamics, mainly through shrinking of the spatial domain affected by cold climate processes. Idioma: Inglés DOI: 10.1016/j.earscirev.2017.11.010 Año: 2018 Publicado en: Earth-Science Reviews 117 (2018), 175-208 ISSN: 0012-8252 Factor impacto JCR: 9.53 (2018) Categ. JCR: GEOSCIENCES, MULTIDISCIPLINARY rank: 3 / 193 = 0.016 (2018) - Q1 - T1 Factor impacto SCIMAGO: 3.657 - Earth and Planetary Sciences (miscellaneous) (Q1)