000130789 001__ 130789 000130789 005__ 20240131210811.0 000130789 0247_ $$2doi$$a10.1016/j.jmaa.2020.124131 000130789 0248_ $$2sideral$$a117712 000130789 037__ $$aART-2020-117712 000130789 041__ $$aeng 000130789 100__ $$0(orcid)0000-0003-0398-6883$$aGalé, José E.$$uUniversidad de Zaragoza 000130789 245__ $$aHilbertian Hardy-Sobolev spaces on a half-plane 000130789 260__ $$c2020 000130789 5060_ $$aAccess copy available to the general public$$fUnrestricted 000130789 5203_ $$aIn this paper we deal with a scale of reproducing kernel Hilbert spaces H2 (n), n=0, which are linear subspaces of the classical Hilbertian Hardy space on the right-hand half-plane C+. They are obtained as ranges of the Laplace transform in extended versions of the Paley-Wiener theorem which involve absolutely continuous functions of higher degree. An explicit integral formula is given for the reproducing kernel Kz, n of H2 (n), from which we can find the estimate ¿Kz, n¿~|z|-1/2 for z¿C+. Then composition operators Cf:H2 (n)¿H2 (n), Cff=f°f, on these spaces are discussed, giving some necessary and some sufficient conditions for analytic maps f:C+¿C+ to induce bounded composition operators. 000130789 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E26-17R$$9info:eu-repo/grantAgreement/ES/MCYTS-MTM2016-77710-P 000130789 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/ 000130789 590__ $$a1.583$$b2020 000130789 591__ $$aMATHEMATICS$$b63 / 330 = 0.191$$c2020$$dQ1$$eT1 000130789 591__ $$aMATHEMATICS, APPLIED$$b109 / 265 = 0.411$$c2020$$dQ2$$eT2 000130789 592__ $$a0.95$$b2020 000130789 593__ $$aApplied Mathematics$$c2020$$dQ1 000130789 593__ $$aAnalysis$$c2020$$dQ1 000130789 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000130789 700__ $$aMatache, Valentin 000130789 700__ $$0(orcid)0000-0001-9430-343X$$aMiana, Pedro J.$$uUniversidad de Zaragoza 000130789 700__ $$aSánchez-Lajusticia, Luis 000130789 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático 000130789 773__ $$g489, 1 (2020), 124131 1-25$$pJ. math. anal. appl.$$tJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS$$x0022-247X 000130789 8564_ $$s424840$$uhttps://zaguan.unizar.es/record/130789/files/texto_completo.pdf$$yPostprint 000130789 8564_ $$s1336614$$uhttps://zaguan.unizar.es/record/130789/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000130789 909CO $$ooai:zaguan.unizar.es:130789$$particulos$$pdriver 000130789 951__ $$a2024-01-31-19:21:12 000130789 980__ $$aARTICLE