RKH spaces of Brownian type defined by Cesaro-Hardy operators
Resumen: We study reproducing kernel Hilbert spaces introduced as ranges of generalized Cesaro-Hardy operators, in one real variable and in one complex variable. Such spaces can be seen as formed by absolutely continuous functions on the positive half-line (or paths of infinite length) of fractional order, in the real case. A theorem of Paley-Wiener type is given which connects the real setting with the complex one. These spaces are related with fractional operations in the context of integrated Brownian processes. We give estimates of the norms of the corresponding reproducing kernels.
Idioma: Inglés
DOI: 10.1007/s13324-021-00558-5
Año: 2021
Publicado en: Analysis and Mathematical Physics 11, 3 (2021), 119 [34 pp]
ISSN: 1664-2368

Factor impacto JCR: 1.57 (2021)
Categ. JCR: MATHEMATICS rank: 65 / 333 = 0.195 (2021) - Q1 - T1
Categ. JCR: MATHEMATICS, APPLIED rank: 109 / 267 = 0.408 (2021) - Q2 - T2

Factor impacto CITESCORE: 2.4 - Mathematics (Q2)

Factor impacto SCIMAGO: 0.542 - Analysis (Q2) - Algebra and Number Theory (Q2)

Tipo y forma: Article (PostPrint)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)
Exportado de SIDERAL (2024-01-31-19:21:20)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > analisis_matematico



 Notice créée le 2024-01-31, modifiée le 2024-01-31


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)