000130956 001__ 130956
000130956 005__ 20240202151703.0
000130956 0247_ $$2doi$$a10.1007/s10569-018-9873-1
000130956 0248_ $$2sideral$$a110468
000130956 037__ $$aART-2018-110468
000130956 041__ $$aeng
000130956 100__ $$aPetit, A.
000130956 245__ $$aCreation of a synthetic population of space debris to reduce discrepancies between simulation and observations
000130956 260__ $$c2018
000130956 5060_ $$aAccess copy available to the general public$$fUnrestricted
000130956 5203_ $$aThe number of space debris has increased in the orbital environment, and consequently, the risk of collision between satellites and space debris or space debris and space debris has become a hot topic in Celestial Mechanics. Unfortunately, just a small fraction of the biggest and brightest objects are visible by means of radar and optical telescopes. In the last years, many efforts have been made to simulate the creation of space debris populations through different models, which use different sources and diverse orbital propagators, to study how they evolve in the near future. Modeling a fragmentation event is rather complex; furthermore, large uncertainties appear in the number of created fragments, the ejection directions and velocities. In this paper, we propose an innovative way to create a synthetic population of space debris from simulated data, which are constrained by observational data, plus an iterative proportional fitting method to adjust the simulated population by statistical means. The final purpose consists in improving a synthetic population of space debris created with a space debris model helped by an additional data set which allows to converge toward a new synthetic population whose global statistical properties are more satisfying.
000130956 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E24-17R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/ESP2017-87113-R
000130956 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000130956 590__ $$a1.837$$b2018
000130956 591__ $$aMATHEMATICS, INTERDISCIPLINARY APPLICATIONS$$b42 / 104 = 0.404$$c2018$$dQ2$$eT2
000130956 591__ $$aASTRONOMY & ASTROPHYSICS$$b38 / 69 = 0.551$$c2018$$dQ3$$eT2
000130956 592__ $$a0.781$$b2018
000130956 593__ $$aApplied Mathematics$$c2018$$dQ1
000130956 593__ $$aAstronomy and Astrophysics$$c2018$$dQ1
000130956 593__ $$aSpace and Planetary Science$$c2018$$dQ1
000130956 593__ $$aMathematical Physics$$c2018$$dQ1
000130956 593__ $$aModeling and Simulation$$c2018$$dQ1
000130956 593__ $$aComputational Mathematics$$c2018$$dQ1
000130956 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000130956 700__ $$0(orcid)0000-0002-7620-4523$$aCasanova, D.
000130956 700__ $$aDumont, M.
000130956 700__ $$aLemaitre, A.
000130956 773__ $$g130, 12 (2018), UNSP 79 [19 pp]$$pCelest. mech. dyn. astron.$$tCelestial Mechanics and Dynamical Astronomy$$x0923-2958
000130956 8564_ $$s498020$$uhttps://zaguan.unizar.es/record/130956/files/texto_completo.pdf$$yPostprint
000130956 8564_ $$s1246904$$uhttps://zaguan.unizar.es/record/130956/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000130956 909CO $$ooai:zaguan.unizar.es:130956$$particulos$$pdriver
000130956 951__ $$a2024-02-02-14:49:03
000130956 980__ $$aARTICLE