Dynamics of persistent infections in homogeneous populations

Sanz, J. (Universidad de Zaragoza) ; Floría, L. M. (Universidad de Zaragoza) ; Moreno, Y. (Universidad de Zaragoza)
Dynamics of persistent infections in homogeneous populations
Resumen: Modeling the dynamics of persistent infections presents several challenges. These diseases are characterized by long latency periods, which makes it compulsory to consider populations of varying sizes. In this paper, we discuss a model for the spreading of persistent infections in homogeneous, well-mixed, populations. We first derive the equations describing the system's dynamics and find the epidemic threshold by a stability analysis. Analytical solutions are then shown to agree with results obtained with numerical simulations. The present model, although simple, opens the path to more complex approaches to the spreading of persistent infections.
Idioma: Inglés
DOI: 10.1142/S0218127412501647
Año: 2012
Publicado en: INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS 22, 7 (2012), -
ISSN: 0218-1274

Factor impacto JCR: 0.921 (2012)
Categ. JCR: MULTIDISCIPLINARY SCIENCES rank: 20 / 57 = 0.351 (2012) - Q2 - T2
Categ. JCR: MATHEMATICS, INTERDISCIPLINARY APPLICATIONS rank: 48 / 93 = 0.516 (2012) - Q3 - T2

Tipo y forma: Article (PostPrint)
Área (Departamento): Área Física Teórica (Dpto. Física Teórica)
Área (Departamento): Área Física Materia Condensada (Dpto. Física Materia Condensa.)


Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-02-07-14:53:36)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Física de la Materia Condensada
Articles > Artículos por área > Física Teórica



 Record created 2024-02-05, last modified 2024-02-07


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)