000131238 001__ 131238
000131238 005__ 20240206154530.0
000131238 0247_ $$2doi$$a10.1090/S0002-9939-2010-10665-2
000131238 0248_ $$2sideral$$a74434
000131238 037__ $$aART-2011-74434
000131238 041__ $$aeng
000131238 100__ $$aAlcalde Cuesta, Fernando
000131238 245__ $$aTransversely Cantor laminations as inverse limits
000131238 260__ $$c2011
000131238 5060_ $$aAccess copy available to the general public$$fUnrestricted
000131238 5203_ $$aWe demonstrate that any minimal transversely Cantor compact lamination of dimension and class without holonomy is an inverse limit of compact branched manifolds of dimension . To prove this result, we extend the triangulation theorem for manifolds to transversely Cantor laminations. In fact, we give a simple proof of this classical theorem based on the existence of -compatible differentiable structures of class .
000131238 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000131238 590__ $$a0.611$$b2011
000131238 591__ $$aMATHEMATICS$$b128 / 289 = 0.443$$c2011$$dQ2$$eT2
000131238 591__ $$aMATHEMATICS, APPLIED$$b153 / 245 = 0.624$$c2011$$dQ3$$eT2
000131238 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000131238 700__ $$0(orcid)0000-0002-1184-5901$$aLozano Rojo, Álvaro
000131238 700__ $$aMacho Stadler, Marta
000131238 773__ $$g139, 7 (2011), 2615-2630$$pProc. Am. Math. Soc.$$tPROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY$$x0002-9939
000131238 8564_ $$s267860$$uhttps://zaguan.unizar.es/record/131238/files/texto_completo.pdf$$yPostprint
000131238 8564_ $$s1646384$$uhttps://zaguan.unizar.es/record/131238/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000131238 909CO $$ooai:zaguan.unizar.es:131238$$particulos$$pdriver
000131238 951__ $$a2024-02-06-14:52:38
000131238 980__ $$aARTICLE