Resumen: We demonstrate that any minimal transversely Cantor compact lamination of dimension and class without holonomy is an inverse limit of compact branched manifolds of dimension . To prove this result, we extend the triangulation theorem for manifolds to transversely Cantor laminations. In fact, we give a simple proof of this classical theorem based on the existence of -compatible differentiable structures of class . Idioma: Inglés DOI: 10.1090/S0002-9939-2010-10665-2 Año: 2011 Publicado en: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY 139, 7 (2011), 2615-2630 ISSN: 0002-9939 Factor impacto JCR: 0.611 (2011) Categ. JCR: MATHEMATICS rank: 128 / 289 = 0.443 (2011) - Q2 - T2 Categ. JCR: MATHEMATICS, APPLIED rank: 153 / 245 = 0.624 (2011) - Q3 - T2 Tipo y forma: Artículo (PostPrint)