Transversely Cantor laminations as inverse limits
Resumen: We demonstrate that any minimal transversely Cantor compact lamination of dimension and class without holonomy is an inverse limit of compact branched manifolds of dimension . To prove this result, we extend the triangulation theorem for manifolds to transversely Cantor laminations. In fact, we give a simple proof of this classical theorem based on the existence of -compatible differentiable structures of class .
Idioma: Inglés
DOI: 10.1090/S0002-9939-2010-10665-2
Año: 2011
Publicado en: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY 139, 7 (2011), 2615-2630
ISSN: 0002-9939

Factor impacto JCR: 0.611 (2011)
Categ. JCR: MATHEMATICS rank: 128 / 289 = 0.443 (2011) - Q2 - T2
Categ. JCR: MATHEMATICS, APPLIED rank: 153 / 245 = 0.624 (2011) - Q3 - T2

Tipo y forma: Article (PostPrint)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes.


Exportado de SIDERAL (2024-02-06-14:52:38)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2024-02-06, last modified 2024-02-06


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)