000131286 001__ 131286
000131286 005__ 20240731103306.0
000131286 0247_ $$2doi$$a10.1002/aelm.202300509
000131286 0248_ $$2sideral$$a136796
000131286 037__ $$aART-2023-136796
000131286 041__ $$aeng
000131286 100__ $$aSong, Tingfeng
000131286 245__ $$aImproved polarization-retention-endurance in Hf0.5Zr0.5O2 films by ZrO2 capping via electrostatic effects
000131286 260__ $$c2023
000131286 5060_ $$aAccess copy available to the general public$$fUnrestricted
000131286 5203_ $$aFerroelectric hafnia is one of the most promising materials for next generation of non‐volatile memory devices. Several strategies have demonstrated to be of interest to improve its functional properties. Interface engineering, realized by the introduction of additional layer in the capacitor structure, is demonstrated as a promising strategy. However, interface layers can have multiple implications, such as changes in the chemistry of the interfaces and an increase of depolarization field, whose effects are difficult to discriminate. The role of HfO2 and ZrO2 capping is explored on polarization, retention, endurance, and leakage properties of Hf0.5Zr0.5O2 epitaxial films. In HfO2 capped films, lower polarization is observed, and endurance and retention are also comparably worse than in ZrO2 capped films. Complementary under illumination ferroelectric characterization and capacitance measurements indicate a reduction of defects and interface capacitance contribution in ZrO2 capped films. For both cappings, the interfaces with the Hf0.5Zr0.5O2 layer are shown to be compositionally sharp and the phase of Hf0.5Zr0.5O2 (HZO) grains is replicated on the capping layer, indicating that electrostatic effects prevail and that the use of interface layers with high permittivity, here ZrO2, is crucial to favor good functional properties.
000131286 536__ $$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-130453B-C21$$9info:eu-repo/grantAgreement/EC/H2020/ 861153/EU/Materials for Neuromorphic Circuits/MANIC$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020  861153-MANIC$$9info:eu-repo/grantAgreement/ES/MICINN/AEI/PID2019-107727RB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/AEI/PID2020-112548RB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/CEX2019-000917-S$$9info:eu-repo/grantAgreement/ES/MICINN-FEDER/PID2020-112914RB-I00
000131286 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000131286 590__ $$a5.3$$b2023
000131286 592__ $$a1.689$$b2023
000131286 591__ $$aPHYSICS, APPLIED$$b42 / 179 = 0.235$$c2023$$dQ1$$eT1
000131286 593__ $$aElectronic, Optical and Magnetic Materials$$c2023$$dQ1
000131286 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b46 / 140 = 0.329$$c2023$$dQ2$$eT1
000131286 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b122 / 438 = 0.279$$c2023$$dQ2$$eT1
000131286 594__ $$a11.0$$b2023
000131286 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000131286 700__ $$aKoutsogiannis, Panagiotis
000131286 700__ $$0(orcid)0000-0002-6761-6171$$aMagén, César$$uUniversidad de Zaragoza
000131286 700__ $$0(orcid)0000-0002-0111-8284$$aPardo, José A.$$uUniversidad de Zaragoza
000131286 700__ $$aSánchez, Florencio
000131286 700__ $$aFina, Ignasi
000131286 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000131286 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000131286 773__ $$g(2023), 2300509 [9 pp.]$$pAdv. Electron. Mater.$$tAdvanced Electronic Materials$$x2199-160X
000131286 8564_ $$s5191881$$uhttps://zaguan.unizar.es/record/131286/files/texto_completo.pdf$$yVersión publicada
000131286 8564_ $$s2545381$$uhttps://zaguan.unizar.es/record/131286/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000131286 909CO $$ooai:zaguan.unizar.es:131286$$particulos$$pdriver
000131286 951__ $$a2024-07-31-09:38:05
000131286 980__ $$aARTICLE