Bernoulli and binomial proliferation on evolutionary graphs
Resumen: In this paper we introduce random proliferation models on graphs. We consider two types of particles: type-1/mutant/invader/red particles proliferates on a population of type-2/wild-type/resident/blue particles. Unlike the well-known Moran model on graphs –as introduced in Lieberman et al. (2005)–, type-1 particles can occupy in a single iteration several neighbouring sites previously occupied by type-2 particles. Two variants are considered, depending on the random distribution involving the proliferation mechanism: Bernoulli and binomial proliferation. By comparison with fixation probability of type-1 particles in the Moran process, critical parameters are introduced. Properties of proliferation are studied and some particular cases are analytically solved. Finally, by updating the parameters that drive the processes through a density-dependent mechanism, it is possible to capture additional relevant features as fluctuating waves of type-1 particles over long periods of time. In fact, the models can be adapted to tackle more general, complex and realistic situations. © 2021 Elsevier Ltd
Idioma: Inglés
DOI: 10.1016/j.jtbi.2021.110942
Año: 2022
Publicado en: Journal of theoretical biology 534 (2022), 110942 [19 pp.]
ISSN: 0022-5193

Factor impacto JCR: 2.0 (2022)
Categ. JCR: MATHEMATICAL & COMPUTATIONAL BIOLOGY rank: 34 / 55 = 0.618 (2022) - Q3 - T2
Categ. JCR: BIOLOGY rank: 54 / 92 = 0.587 (2022) - Q3 - T2

Factor impacto CITESCORE: 4.9 - Agricultural and Biological Sciences (Q1) - Biochemistry, Genetics and Molecular Biology (Q2) - Immunology and Microbiology (Q3) - Medicine (Q2) - Mathematics (Q1)

Factor impacto SCIMAGO: 0.566 - Agricultural and Biological Sciences (miscellaneous) (Q1) - Biochemistry, Genetics and Molecular Biology (miscellaneous) (Q2) - Statistics and Probability (Q2) - Medicine (miscellaneous) (Q2) - Modeling and Simulation (Q2) - Applied Mathematics (Q2) - Immunology and Microbiology (miscellaneous) (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E22-17R
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas)
Exportado de SIDERAL (2024-03-18-13:46:27)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos



 Notice créée le 2024-02-07, modifiée le 2024-03-19


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)