BayesOpt: A Bayesian optimization library for nonlinear optimization, experimental design and bandits
Resumen: BayesOpt is a library with state-of-the-art Bayesian optimization methods to solve nonlinear optimization, stochastic bandits or sequential experimental design problems. Bayesian optimization characterized for being sample ecient as it builds a posterior distribution to capture the evidence and prior knowledge of the target function. Built in standard C++, the library is extremely ecient while being portable and
exible. It includes a common interface for C, C++, Python, Matlab and Octave.

Idioma: Inglés
Año: 2014
Publicado en: JOURNAL OF MACHINE LEARNING RESEARCH 15 (2014), 3735-3739
ISSN: 1532-4435

Factor impacto JCR: 2.473 (2014)
Categ. JCR: COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE rank: 22 / 123 = 0.179 (2014) - Q1 - T1
Categ. JCR: AUTOMATION & CONTROL SYSTEMS rank: 10 / 58 = 0.172 (2014) - Q1 - T1

Tipo y forma: Article (Published version)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-02-09-14:28:02)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2024-02-09, last modified 2024-02-09


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)