An improved discretization of Schrödinger-like radial equations
Resumen: A new discretization of the radial equations that appear in the solution of separable second order partial differential equations with some rotational symmetry (as the Schrödinger equation in a central potential) is presented. It cures a pathology, related to the singular behavior of the radial function at the origin, that suffers in some cases the discretization of the second derivative with respect to the radial coordinate. This pathology causes an enormous slowing down of the convergence to the continuum limit when the two point boundary value problem posed by the radial equation is solved as a discrete matrix eigenvalue problem. The proposed discretization is a simple solution to that problem. Some illustrative examples are discussed.
Idioma: Inglés
DOI: 10.1088/1751-8121/aacc8b
Año: 2018
Publicado en: Journal of Physics A-Mathematical and Theoretical 51, 32 (2018), 325203 [14 pp]
ISSN: 1751-8113

Factor impacto JCR: 2.11 (2018)
Categ. JCR: PHYSICS, MATHEMATICAL rank: 10 / 55 = 0.182 (2018) - Q1 - T1
Categ. JCR: PHYSICS, MULTIDISCIPLINARY rank: 32 / 81 = 0.395 (2018) - Q2 - T2

Factor impacto SCIMAGO: 0.783 - Mathematical Physics (Q1) - Modeling and Simulation (Q1) - Statistics and Probability (Q1) - Statistical and Nonlinear Physics (Q1) - Physics and Astronomy (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MINECO/MAT2015-68200-C2-2-P
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Física Materia Condensada (Dpto. Física Materia Condensa.)

Rights Reserved All rights reserved by journal editor


Exportado de SIDERAL (2024-02-09-14:28:18)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Física de la Materia Condensada



 Record created 2024-02-09, last modified 2024-02-09


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)