Body schema acquisition through active learning
Resumen: We present an active learning algorithm for the problem of body schema learning, i.e. estimating a kinematic model of a serial robot. The learning process is done online using Recursive Least Squares (RLS) estimation, which outperforms gradient methods usually applied in the literature. In addiction, the method provides the required information to apply an active learning algorithm to find the optimal set of robot configurations and observations to improve the learning process. By selecting the most informative observations, the proposed method minimizes the required amount of data. We have developed an efficient version of the active learning algorithm to select the points in real-time. The algorithms have been tested and compared using both simulated environments and a real humanoid robot.
Idioma: Inglés
DOI: 10.1109/ROBOT.2010.5509406
Año: 2010
Publicado en: IEEE International Conference on Robotics and Automation 2010 (2010), [7 pp.]
ISSN: 2152-4092

Tipo y forma: Article (PostPrint)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)

Rights Reserved All rights reserved by journal editor


Exportado de SIDERAL (2024-02-09-14:29:59)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2024-02-09, last modified 2024-02-09


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)