A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids

Ramdas, S. ; Judd, J. ; . Graham,S ; Kanoni,S. ; Wang, ; Surakka,I ; Wenz,B. ; Clarke, SL ; Chesi, A. ; Wells, A. ; . Bhatti, K. F ; Vedantam, S. Winkler, ; T. W. ; Locke, A. E. ; Marouli, E. ; Zajac, G. ; Wu,K. H. ; Ntalla, Q. Hui ; Klarin, D. ; Hilliard,A. T. ; Wang, Z. ; Xue, C. ; Thorleifsson, G. ; Helgadottir, A. ; Gudbjartsson, DF. ; Holm, H. ; Olafsson, I ; Hwang, M. ; Han, S. ; Akiyama, M. ; Sakaue, S. ; Terao, C. ; Kanai, M. ; Zhou, W. ; Brumpton, B. M. ; Rasheed, H. ; Havulinna, A. S. ; Veturi, Y. ; Pacheco, J. A. ; Rosenthal, E. A. ; Lingren, T. ; Feng, Q. ; Kullo, I. J. ; Narita, A. ; Takayama, J. ; Martin, H. C. ; Hunt, K. A ; Trivedi, B. ; Haessler, J. ; Giulianini, F. ; Bradford, Y. ; Miller, JE ; Campbell, A. ; Lin, K. ; Millwood, IY ; Rasheed, A. ; Hindy, G. ; Faul, JD. ; Zhao, W. ; Weir, DR ; Turman, C. ; Huang, H. ; Graff, M ; Choudhury, A ; Sengupta, D. ; Mahajan, A. ; Brown, MR ; Zhang, W. ; Yu, K. ; Schmidt, EM ; Pandit, A. ; Gustafsson, S. ; Yin, X ; Luan, J. ; Zhao, J. ; Matsuda, J. ; Jang, H. ; Yoon, H. ; Medina-Gomez, C. ; Pitsillides, A ; Hottenga, JJ. ; Wood, AR ; Ji, Y. ; Gao, Z. ; Haworth, S. ; Mitchell, E. ; Chai, JF ; Aadahl, M. ; Bjerregaard, AA. ; Yao, J. ; Manichaikul, A. ; Chao, A. ; Warren, H.R. ; Ramírez, J. (Universidad de Zaragoza) ; et al.
A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids
Resumen: A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.
Idioma: Inglés
DOI: 10.1016/j.ajhg.2022.06.012
Año: 2022
Publicado en: AMERICAN JOURNAL OF HUMAN GENETICS 109, 8 (2022), 1366-1387
ISSN: 0002-9297

Factor impacto JCR: 9.8 (2022)
Categ. JCR: GENETICS & HEREDITY rank: 11 / 171 = 0.064 (2022) - Q1 - T1
Factor impacto CITESCORE: 17.2 - Medicine (Q1) - Biochemistry, Genetics and Molecular Biology (Q1)

Factor impacto SCIMAGO: 4.943 - Genetics (clinical) (Q1) - Genetics (Q1)

Tipo y forma: Article (Published version)
Área (Departamento): Área Teoría Señal y Comunicac. (Dpto. Ingeniería Electrón.Com.)
Exportado de SIDERAL (2024-03-18-17:06:40)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > teoria_de_la_senal_y_comunicaciones



 Notice créée le 2024-02-09, modifiée le 2024-03-19


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)