RASPV: A robotics framework for augmented simulated prosthetic vision

Pérez-Yus, Alejandro (Universidad de Zaragoza) ; Santos-Villafranca, María (Universidad de Zaragoza) ; Tomás-Barba, Julia ; Bermúdez-Cameo, Jesús (Universidad de Zaragoza) ; Montano-Oliván, Lorenzo ; López-Nicolás, Gonzalo (Universidad de Zaragoza) ; Guerrero, José J. (Universidad de Zaragoza)
RASPV: A robotics framework for augmented simulated prosthetic vision
Resumen: One of the main challenges of visual prostheses is to augment the perceived information to improve the experience of its wearers. Given the limited access to implanted patients, in order to facilitate the experimentation of new techniques, this is often evaluated via Simulated Prosthetic Vision (SPV) with sighted people. In this work, we introduce a novel SPV framework and implementation that presents major advantages with respect to previous approaches. First, it is integrated into a robotics framework, which allows us to benefit from a wide range of methods and algorithms from the field (e.g. object recognition, obstacle avoidance, autonomous navigation, deep learning). Second, we go beyond traditional image processing with 3D point clouds processing using an RGB-D camera, allowing us to robustly detect the floor, obstacles and the structure of the scene. Third, it works either with a real camera or in a virtual environment, which gives us endless possibilities for immersive experimentation through a head-mounted display. Fourth, we incorporate a validated temporal phosphene model that replicates time effects into the generation of visual stimuli. Finally, we have proposed, developed and tested several applications within this framework, such as avoiding moving obstacles, providing a general understanding of the scene, staircase detection, helping the subject to navigate an unfamiliar space, and object and person detection. We provide experimental results in real and virtual environments. The code is publicly available at https://www.github.com/aperezyus/RASPV
Idioma: Inglés
DOI: 10.1109/ACCESS.2024.3357400
Año: 2024
Publicado en: IEEE Access 12 (2024), 15251-15267
ISSN: 2169-3536

Factor impacto JCR: 3.6 (2024)
Categ. JCR: COMPUTER SCIENCE, INFORMATION SYSTEMS rank: 93 / 258 = 0.36 (2024) - Q2 - T2
Categ. JCR: TELECOMMUNICATIONS rank: 50 / 120 = 0.417 (2024) - Q2 - T2
Categ. JCR: ENGINEERING, ELECTRICAL & ELECTRONIC rank: 128 / 366 = 0.35 (2024) - Q2 - T2

Factor impacto SCIMAGO: 0.849 - Engineering (miscellaneous) (Q1) - Computer Science (miscellaneous) (Q1) - Materials Science (miscellaneous) (Q2)

Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2021-125209OB-I00
Financiación: info:eu-repo/grantAgreement/ES/UZ/JIUZ-2022-IAR-05
Tipo y forma: Article (Published version)
Área (Departamento): Área Ingen.Sistemas y Automát. (Dpto. Informát.Ingenie.Sistms.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2025-09-22-14:33:28)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Ingeniería de Sistemas y Automática



 Record created 2024-02-12, last modified 2025-09-23


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)