000131672 001__ 131672
000131672 005__ 20240319080948.0
000131672 0247_ $$2doi$$a10.1142/S0219199721500528
000131672 0248_ $$2sideral$$a127426
000131672 037__ $$aART-2022-127426
000131672 041__ $$aeng
000131672 100__ $$0(orcid)0000-0003-1820-6755$$aCogolludo-Agustín J.I.$$uUniversidad de Zaragoza
000131672 245__ $$aDelta invariant of curves on rational surfaces I. An analytic approach
000131672 260__ $$c2022
000131672 5060_ $$aAccess copy available to the general public$$fUnrestricted
000131672 5203_ $$aWe prove that if (C, 0) is a reduced curve germ on a rational surface singularity (X, 0) then its delta invariant can be recovered by a concrete expression associated with the embedded topological type of the pair C X. Furthermore, we also identify it with another (a priori) embedded analytic invariant, which is motivated by the theory of adjoint ideals. Finally, we connect our formulae with the local correction term at singular points of the global Riemann-Roch formula, valid for projective normal surfaces, introduced by Blache.
000131672 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/Construyendo Europa desde Aragón$$9info:eu-repo/grantAgreement/ES/DGA-FSE/Grupo Investigación de Algebra$$9info:eu-repo/grantAgreement/ES/MICINN/MTM2016-76868-C2-2-P$$9info:eu-repo/grantAgreement/ES/MICIU/SEV-2017-0718
000131672 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000131672 590__ $$a1.6$$b2022
000131672 591__ $$aMATHEMATICS$$b62 / 329 = 0.188$$c2022$$dQ1$$eT1
000131672 591__ $$aMATHEMATICS, APPLIED$$b105 / 267 = 0.393$$c2022$$dQ2$$eT2
000131672 592__ $$a1.39$$b2022
000131672 593__ $$aMathematics (miscellaneous)$$c2022$$dQ1
000131672 593__ $$aApplied Mathematics$$c2022$$dQ1
000131672 594__ $$a2.9$$b2022
000131672 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000131672 700__ $$aLászló T.
000131672 700__ $$0(orcid)0000-0002-6559-4722$$aMartín-Morales J.$$uUniversidad de Zaragoza
000131672 700__ $$aNémethi A.
000131672 7102_ $$12006$$2440$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Geometría y Topología
000131672 773__ $$g24, 7 (2022), 2150052 [23 pp.]$$pCommun. Contemp. Math.$$tCommunications in Contemporary Mathematics$$x0219-1997
000131672 8564_ $$s402650$$uhttps://zaguan.unizar.es/record/131672/files/texto_completo.pdf$$yPostprint
000131672 8564_ $$s2353396$$uhttps://zaguan.unizar.es/record/131672/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000131672 909CO $$ooai:zaguan.unizar.es:131672$$particulos$$pdriver
000131672 951__ $$a2024-03-18-12:47:27
000131672 980__ $$aARTICLE