000131672 001__ 131672 000131672 005__ 20240319080948.0 000131672 0247_ $$2doi$$a10.1142/S0219199721500528 000131672 0248_ $$2sideral$$a127426 000131672 037__ $$aART-2022-127426 000131672 041__ $$aeng 000131672 100__ $$0(orcid)0000-0003-1820-6755$$aCogolludo-Agustín J.I.$$uUniversidad de Zaragoza 000131672 245__ $$aDelta invariant of curves on rational surfaces I. An analytic approach 000131672 260__ $$c2022 000131672 5060_ $$aAccess copy available to the general public$$fUnrestricted 000131672 5203_ $$aWe prove that if (C, 0) is a reduced curve germ on a rational surface singularity (X, 0) then its delta invariant can be recovered by a concrete expression associated with the embedded topological type of the pair C X. Furthermore, we also identify it with another (a priori) embedded analytic invariant, which is motivated by the theory of adjoint ideals. Finally, we connect our formulae with the local correction term at singular points of the global Riemann-Roch formula, valid for projective normal surfaces, introduced by Blache. 000131672 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/Construyendo Europa desde Aragón$$9info:eu-repo/grantAgreement/ES/DGA-FSE/Grupo Investigación de Algebra$$9info:eu-repo/grantAgreement/ES/MICINN/MTM2016-76868-C2-2-P$$9info:eu-repo/grantAgreement/ES/MICIU/SEV-2017-0718 000131672 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000131672 590__ $$a1.6$$b2022 000131672 591__ $$aMATHEMATICS$$b62 / 329 = 0.188$$c2022$$dQ1$$eT1 000131672 591__ $$aMATHEMATICS, APPLIED$$b105 / 267 = 0.393$$c2022$$dQ2$$eT2 000131672 592__ $$a1.39$$b2022 000131672 593__ $$aMathematics (miscellaneous)$$c2022$$dQ1 000131672 593__ $$aApplied Mathematics$$c2022$$dQ1 000131672 594__ $$a2.9$$b2022 000131672 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000131672 700__ $$aLászló T. 000131672 700__ $$0(orcid)0000-0002-6559-4722$$aMartín-Morales J.$$uUniversidad de Zaragoza 000131672 700__ $$aNémethi A. 000131672 7102_ $$12006$$2440$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Geometría y Topología 000131672 773__ $$g24, 7 (2022), 2150052 [23 pp.]$$pCommun. Contemp. Math.$$tCommunications in Contemporary Mathematics$$x0219-1997 000131672 8564_ $$s402650$$uhttps://zaguan.unizar.es/record/131672/files/texto_completo.pdf$$yPostprint 000131672 8564_ $$s2353396$$uhttps://zaguan.unizar.es/record/131672/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000131672 909CO $$ooai:zaguan.unizar.es:131672$$particulos$$pdriver 000131672 951__ $$a2024-03-18-12:47:27 000131672 980__ $$aARTICLE