Resumen: Particle physics today faces the challenge of explaining the mystery of dark matter, the origin of matter over anti-matter in the Universe, the origin of the neutrino masses, the apparent fine-tuning of the electro-weak scale, and many other aspects of fundamental physics. Perhaps the most striking frontier to emerge in the search for answers involves new physics at mass scales comparable to familiar matter, below the GeV-scale, or even radically below, down to sub-eV scales, and with very feeble interaction strength. New theoretical ideas to address dark matter and other fundamental questions predict such feebly interacting particles (FIPs) at these scales, and indeed, existing data provide numerous hints for such possibility. A vibrant experimental program to discover such physics is under way, guided by a systematic theoretical approach firmly grounded on the underlying principles of the Standard Model. This document represents the report of the FIPs 2022 workshop, held at CERN between the 17 and 21 October 2022 and aims to give an overview of these efforts, their motivations, and the decadal goals that animate the community involved in the search for FIPs. Idioma: Inglés DOI: 10.1140/epjc/s10052-023-12168-5 Año: 2023 Publicado en: The European Physical Journal C 83 (2023), 1122 [266 pp.] ISSN: 1434-6044 Factor impacto JCR: 4.2 (2023) Categ. JCR: PHYSICS, PARTICLES & FIELDS rank: 9 / 31 = 0.29 (2023) - Q2 - T1 Factor impacto CITESCORE: 8.1 - Physics and Astronomy (miscellaneous) (Q1) - Engineering (miscellaneous) (Q1)