The correction term for the Riemann–Roch formula of cyclic quotient singularities and associated invariants
Resumen: This paper deals with the invariant ¿¿ called the RR-correction term, which appears in the Riemann–Roch and Numerical Adjunction Formulas for normal surface singularities. Typically, ¿¿=¿top¿-¿an¿ decomposes as difference of topological and analytical local invariants of its singularities. The invariant ¿top¿ is well understood and depends only on the dual graph of a good resolution. The purpose of this paper is to give a new interpretation for ¿an¿, which in the case of cyclic quotient singularities can be explicitly computed via generic divisors. We also include two types of applications: one is related to the McKay decomposition of reflexive modules in terms of special reflexive modules in the context of the McKay correspondence. The other application answers two questions posed by Blache (Abh Math Semin Univ Hambg 65:307–340, 1995) on the asymptotic behavior of the invariant ¿¿ of the pluricanonical divisor.
Idioma: Inglés
DOI: 10.1007/s13163-018-0280-7
Año: 2018
Publicado en: Revista Matematica Complutense 32, 2 (2018), 419–450
ISSN: 1139-1138

Factor impacto JCR: 0.966 (2018)
Categ. JCR: MATHEMATICS rank: 101 / 313 = 0.323 (2018) - Q2 - T1
Categ. JCR: MATHEMATICS, APPLIED rank: 153 / 254 = 0.602 (2018) - Q3 - T2

Factor impacto SCIMAGO: 0.749 - Mathematics (miscellaneous) (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E22
Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2016-76868-C2-2-P
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas)

Derechos Reservados Derechos reservados por el editor de la revista


Exportado de SIDERAL (2024-02-19-13:25:34)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2024-02-19, última modificación el 2024-02-19


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)