| Página principal > Artículos > The correction term for the Riemann–Roch formula of cyclic quotient singularities and associated invariants > MARC |
000131757 001__ 131757 000131757 005__ 20240219150721.0 000131757 0247_ $$2doi$$a10.1007/s13163-018-0280-7 000131757 0248_ $$2sideral$$a108124 000131757 037__ $$aART-2018-108124 000131757 041__ $$aeng 000131757 100__ $$0(orcid)0000-0002-6559-4722$$aMartín-Morales, Jorge 000131757 245__ $$aThe correction term for the Riemann–Roch formula of cyclic quotient singularities and associated invariants 000131757 260__ $$c2018 000131757 5060_ $$aAccess copy available to the general public$$fUnrestricted 000131757 5203_ $$aThis paper deals with the invariant ¿¿ called the RR-correction term, which appears in the Riemann–Roch and Numerical Adjunction Formulas for normal surface singularities. Typically, ¿¿=¿top¿-¿an¿ decomposes as difference of topological and analytical local invariants of its singularities. The invariant ¿top¿ is well understood and depends only on the dual graph of a good resolution. The purpose of this paper is to give a new interpretation for ¿an¿, which in the case of cyclic quotient singularities can be explicitly computed via generic divisors. We also include two types of applications: one is related to the McKay decomposition of reflexive modules in terms of special reflexive modules in the context of the McKay correspondence. The other application answers two questions posed by Blache (Abh Math Semin Univ Hambg 65:307–340, 1995) on the asymptotic behavior of the invariant ¿¿ of the pluricanonical divisor. 000131757 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E22$$9info:eu-repo/grantAgreement/ES/MICINN/MTM2016-76868-C2-2-P 000131757 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000131757 590__ $$a0.966$$b2018 000131757 591__ $$aMATHEMATICS$$b101 / 313 = 0.323$$c2018$$dQ2$$eT1 000131757 591__ $$aMATHEMATICS, APPLIED$$b153 / 254 = 0.602$$c2018$$dQ3$$eT2 000131757 592__ $$a0.749$$b2018 000131757 593__ $$aMathematics (miscellaneous)$$c2018$$dQ2 000131757 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000131757 700__ $$0(orcid)0000-0003-1820-6755$$aCogolludo-Agustín, José Ignacio$$uUniversidad de Zaragoza 000131757 7102_ $$12006$$2440$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Geometría y Topología 000131757 773__ $$g32, 2 (2018), 419–450$$pRev. mat. complut.$$tRevista Matematica Complutense$$x1139-1138 000131757 8564_ $$s494305$$uhttps://zaguan.unizar.es/record/131757/files/texto_completo.pdf$$yPostprint 000131757 8564_ $$s1521436$$uhttps://zaguan.unizar.es/record/131757/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000131757 909CO $$ooai:zaguan.unizar.es:131757$$particulos$$pdriver 000131757 951__ $$a2024-02-19-13:25:34 000131757 980__ $$aARTICLE
El sistema ha encontrado un error mientras gestionaba su petición.
Los administradores del sistema han sido avisados.
En caso de duda, póngase en contacto con deposita@unizar.es