000131757 001__ 131757
000131757 005__ 20240219150721.0
000131757 0247_ $$2doi$$a10.1007/s13163-018-0280-7
000131757 0248_ $$2sideral$$a108124
000131757 037__ $$aART-2018-108124
000131757 041__ $$aeng
000131757 100__ $$0(orcid)0000-0002-6559-4722$$aMartín-Morales, Jorge
000131757 245__ $$aThe correction term for the Riemann–Roch formula of cyclic quotient singularities and associated invariants
000131757 260__ $$c2018
000131757 5060_ $$aAccess copy available to the general public$$fUnrestricted
000131757 5203_ $$aThis paper deals with the invariant ¿¿ called the RR-correction term, which appears in the Riemann–Roch and Numerical Adjunction Formulas for normal surface singularities. Typically, ¿¿=¿top¿-¿an¿ decomposes as difference of topological and analytical local invariants of its singularities. The invariant ¿top¿ is well understood and depends only on the dual graph of a good resolution. The purpose of this paper is to give a new interpretation for ¿an¿, which in the case of cyclic quotient singularities can be explicitly computed via generic divisors. We also include two types of applications: one is related to the McKay decomposition of reflexive modules in terms of special reflexive modules in the context of the McKay correspondence. The other application answers two questions posed by Blache (Abh Math Semin Univ Hambg 65:307–340, 1995) on the asymptotic behavior of the invariant ¿¿ of the pluricanonical divisor.
000131757 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E22$$9info:eu-repo/grantAgreement/ES/MICINN/MTM2016-76868-C2-2-P
000131757 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000131757 590__ $$a0.966$$b2018
000131757 591__ $$aMATHEMATICS$$b101 / 313 = 0.323$$c2018$$dQ2$$eT1
000131757 591__ $$aMATHEMATICS, APPLIED$$b153 / 254 = 0.602$$c2018$$dQ3$$eT2
000131757 592__ $$a0.749$$b2018
000131757 593__ $$aMathematics (miscellaneous)$$c2018$$dQ2
000131757 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000131757 700__ $$0(orcid)0000-0003-1820-6755$$aCogolludo-Agustín, José Ignacio$$uUniversidad de Zaragoza
000131757 7102_ $$12006$$2440$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Geometría y Topología
000131757 773__ $$g32, 2 (2018), 419–450$$pRev. mat. complut.$$tRevista Matematica Complutense$$x1139-1138
000131757 8564_ $$s494305$$uhttps://zaguan.unizar.es/record/131757/files/texto_completo.pdf$$yPostprint
000131757 8564_ $$s1521436$$uhttps://zaguan.unizar.es/record/131757/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000131757 909CO $$ooai:zaguan.unizar.es:131757$$particulos$$pdriver
000131757 951__ $$a2024-02-19-13:25:34
000131757 980__ $$aARTICLE