Estudios
I+D+I
Institución
Internacional
Vida Universitaria
Repositorio Institucional de Documentos
Buscar
Enviar
Personalizar
Sus alertas
Sus carpetas
Sus búsquedas
Ayuda
EN
/
ES
Página principal
>
Artículos
> A method for the automated construction of 3d models of cities and neighborhoods from official cadaster data for solar analysis
Estadísticas de uso
Gráficos
A method for the automated construction of 3d models of cities and neighborhoods from official cadaster data for solar analysis
Beltran-Velamazan C.
(Universidad de Zaragoza)
;
Monzón-Chavarrías M.
(Universidad de Zaragoza)
;
López-Mesa B.
(Universidad de Zaragoza)
Resumen:
3D city models are a useful tool to analyze the solar potential of neighborhoods and cities. These models are built from buildings footprints and elevation measurements. Footprints are widely available, but elevation datasets remain expensive and time-consuming to acquire. Our hypothesis is that the GIS cadastral data can be used to build a 3D model automatically, so that generating complete cities 3D models can be done in a short time with already available data. We propose a method for the automatic construction of 3D models of cities and neighborhoods from 2D cadastral data and study their usefulness for solar analysis by comparing the results with those from a hand-built model. The results show that the accuracy in evaluating solar access on pedestrian areas and solar potential on rooftops with the automatic method is close to that from the hand-built model with slight differences of 3.4% and 2.2%, respectively. On the other hand, time saving with the automatic models is significant. A neighborhood of 400, 000 m2 can be built up in 30 min, 50 times faster than by hand, and an entire city of 967 km2 can be built in 8.5 h. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Idioma:
Inglés
DOI:
10.3390/su13116028
Año:
2021
Publicado en:
Sustainability (Switzerland)
13, 11 (2021), 6028 [19 pp.]
ISSN:
2071-1050
Factor impacto JCR:
3.889 (2021)
Categ. JCR:
ENVIRONMENTAL SCIENCES
rank: 133 / 279 = 0.477
(2021)
- Q2
- T2
Categ. JCR:
ENVIRONMENTAL STUDIES
rank: 57 / 128 = 0.445
(2021)
- Q2
- T2
Categ. JCR:
GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
rank: 35 / 47 = 0.745
(2021)
- Q3
- T3
Categ. JCR:
GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
rank: 7 / 9 = 0.778
(2021)
- Q4
- T3
Factor impacto CITESCORE:
5.0 -
Social Sciences
(Q1) -
Engineering
(Q1) -
Energy
(Q2) -
Environmental Science
(Q1)
Factor impacto SCIMAGO:
0.664 -
Energy Engineering and Power Technology
(Q1) -
Renewable Energy, Sustainability and the Environment
(Q1) -
Management, Monitoring, Policy and Law
(Q1) -
Geography, Planning and Development
(Q1)
Financiación:
info:eu-repo/grantAgreement/ES/MICINN/PID2019-104871RB-C21
Tipo y forma:
Artículo (Versión definitiva)
Área (Departamento):
Área Construc. Arquitectónicas
(
Dpto. Arquitectura
)
Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
Exportado de SIDERAL (2024-02-19-13:27:23)
Enlace permanente:
Copiar
Visitas y descargas
Este artículo se encuentra en las siguientes colecciones:
Artículos
Volver a la búsqueda
Registro creado el 2024-02-19, última modificación el 2024-02-19
Versión publicada:
PDF
Valore este documento:
Rate this document:
1
2
3
4
5
(Sin ninguna reseña)
Añadir a una carpeta personal
Exportar como
BibTeX
,
MARC
,
MARCXML
,
DC
,
EndNote
,
NLM
,
RefWorks