000132068 001__ 132068
000132068 005__ 20240311102822.0
000132068 0247_ $$2doi$$a10.1016/j.jsc.2007.07.004
000132068 0248_ $$2sideral$$a64578
000132068 037__ $$aART-2007-64578
000132068 041__ $$aeng
000132068 100__ $$aFalcon, R. M.
000132068 245__ $$aGrobner Bases and the Number of Latin Squares Related to Autotopisms of Order <= 7
000132068 260__ $$c2007
000132068 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132068 5203_ $$aLatin squares can be seen as multiplication tables of quasigroups, which are, in general, non-commutative and non-associative algebraic structures. The number of Latin squares having a fixed isotopism in their autotopism group is at the moment an open problem. In this paper, we use Gröbner bases to describe an algorithm that allows one to obtain the previous number. Specifically, this algorithm is implemented in Singular to obtain the number of Latin squares related to any autotopism of Latin squares of order up to 7.
000132068 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000132068 590__ $$a0.658$$b2007
000132068 591__ $$aMATHEMATICS, APPLIED$$b91 / 165 = 0.552$$c2007$$dQ3$$eT2
000132068 591__ $$aCOMPUTER SCIENCE, THEORY & METHODS$$b49 / 78 = 0.628$$c2007$$dQ3$$eT2
000132068 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000132068 700__ $$0(orcid)0000-0002-6559-4722$$aMartin-Morales, J.
000132068 773__ $$g42, 11-12 (2007), 1142-1154$$pJ. symb. comput.$$tJOURNAL OF SYMBOLIC COMPUTATION$$x0747-7171
000132068 8564_ $$s195879$$uhttps://zaguan.unizar.es/record/132068/files/texto_completo.pdf$$yVersión publicada
000132068 8564_ $$s1131606$$uhttps://zaguan.unizar.es/record/132068/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000132068 909CO $$ooai:zaguan.unizar.es:132068$$particulos$$pdriver
000132068 951__ $$a2024-03-11-10:22:31
000132068 980__ $$aARTICLE