Grobner Bases and the Number of Latin Squares Related to Autotopisms of Order <= 7
Resumen: Latin squares can be seen as multiplication tables of quasigroups, which are, in general, non-commutative and non-associative algebraic structures. The number of Latin squares having a fixed isotopism in their autotopism group is at the moment an open problem. In this paper, we use Gröbner bases to describe an algorithm that allows one to obtain the previous number. Specifically, this algorithm is implemented in Singular to obtain the number of Latin squares related to any autotopism of Latin squares of order up to 7.
Idioma: Inglés
DOI: 10.1016/j.jsc.2007.07.004
Año: 2007
Publicado en: JOURNAL OF SYMBOLIC COMPUTATION 42, 11-12 (2007), 1142-1154
ISSN: 0747-7171

Factor impacto JCR: 0.658 (2007)
Categ. JCR: MATHEMATICS, APPLIED rank: 91 / 165 = 0.552 (2007) - Q3 - T2
Categ. JCR: COMPUTER SCIENCE, THEORY & METHODS rank: 49 / 78 = 0.628 (2007) - Q3 - T2

Tipo y forma: Article (Published version)
Exportado de SIDERAL (2024-03-11-10:22:31)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos



 Notice créée le 2024-03-01, modifiée le 2024-03-11


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)