000132083 001__ 132083
000132083 005__ 20240301161205.0
000132083 0247_ $$2doi$$a10.3390/app112110123
000132083 0248_ $$2sideral$$a125772
000132083 037__ $$aART-2021-125772
000132083 041__ $$aeng
000132083 100__ $$0(orcid)0000-0002-6087-7467$$aOrús, P.
000132083 245__ $$aCryo-focused ion beam-induced deposition of tungsten–carbon nanostructures using a thermoelectric plate
000132083 260__ $$c2021
000132083 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132083 5203_ $$aFocused Ion Beam-Induced Deposition (FIBID) is a single-step nanopatterning technique that applies a focused beam of ions to induce the decomposition of a gaseous precursor. The processing rate of FIBID increases by two orders of magnitude when the process is performed at cryogenic temperatures (Cryo-FIBID): the precursor forms a condensed layer on the surface of the cooled substrate, greatly enhancing the amount of material available for decomposition. Cryo-FIBID has been achieved so far by making use of liquid nitrogen-based cooling circuits, which require the passage of a flowing gas as a cooling agent. Here, the Cryo-FIBID of the W(CO)6 precursor is performed using a coolant-free thermoelectric plate utilizing the Peltier effect. Performed at-60 ºC, the procedure yields a W–C-based material with structural and electrical properties comparable to those of its counterpart grown in coolant-based Cryo-FIBID. The use of the thermoelectric plate significantly reduces the vibrations and sample drift induced by the flow of passing coolant gas and allows for the fabrication of similar nanostructures. In summary, the reported process represents a further step towards the practical implementation of the Cryo-FIBID technique, and it will facilitate its use by a broader research community. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
000132083 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E13-20R$$9info:eu-repo/grantAgreement/ES/MCIU/PID2020-112914RB-I00$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-82970-C2-1-R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-82970-C2-2-R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2018-102627-T
000132083 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000132083 590__ $$a2.838$$b2021
000132083 591__ $$aPHYSICS, APPLIED$$b76 / 161 = 0.472$$c2021$$dQ2$$eT2
000132083 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b39 / 92 = 0.424$$c2021$$dQ2$$eT2
000132083 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b100 / 179 = 0.559$$c2021$$dQ3$$eT2
000132083 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b218 / 344 = 0.634$$c2021$$dQ3$$eT2
000132083 592__ $$a0.507$$b2021
000132083 593__ $$aComputer Science Applications$$c2021$$dQ2
000132083 593__ $$aEngineering (miscellaneous)$$c2021$$dQ2
000132083 593__ $$aProcess Chemistry and Technology$$c2021$$dQ2
000132083 593__ $$aMaterials Science (miscellaneous)$$c2021$$dQ2
000132083 593__ $$aFluid Flow and Transfer Processes$$c2021$$dQ2
000132083 594__ $$a3.7$$b2021
000132083 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000132083 700__ $$aSigloch, F.
000132083 700__ $$0(orcid)0000-0002-4123-487X$$aSangiao, S.$$uUniversidad de Zaragoza
000132083 700__ $$0(orcid)0000-0001-9566-0738$$aTeresa Nogueras, J.M. de$$uUniversidad de Zaragoza
000132083 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000132083 773__ $$g11, 21 (2021), 10123 [7 pp]$$pAppl. sci.$$tApplied Sciences (Switzerland)$$x2076-3417
000132083 8564_ $$s3700198$$uhttps://zaguan.unizar.es/record/132083/files/texto_completo.pdf$$yVersión publicada
000132083 8564_ $$s2748890$$uhttps://zaguan.unizar.es/record/132083/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000132083 909CO $$ooai:zaguan.unizar.es:132083$$particulos$$pdriver
000132083 951__ $$a2024-03-01-14:39:20
000132083 980__ $$aARTICLE