Estudios
I+D+I
Institución
Internacional
Vida Universitaria
Repositorio Institucional de Documentos
Buscar
Enviar
Personalizar
Sus alertas
Sus carpetas
Sus búsquedas
Ayuda
EN
/
ES
Página principal
>
Artículos
> Cryo-focused ion beam-induced deposition of tungsten–carbon nanostructures using a thermoelectric plate
Estadísticas de uso
Gráficos
Cryo-focused ion beam-induced deposition of tungsten–carbon nanostructures using a thermoelectric plate
Orús, P.
;
Sigloch, F.
;
Sangiao, S.
(Universidad de Zaragoza)
;
Teresa Nogueras, J.M. de
(Universidad de Zaragoza)
Resumen:
Focused Ion Beam-Induced Deposition (FIBID) is a single-step nanopatterning technique that applies a focused beam of ions to induce the decomposition of a gaseous precursor. The processing rate of FIBID increases by two orders of magnitude when the process is performed at cryogenic temperatures (Cryo-FIBID): the precursor forms a condensed layer on the surface of the cooled substrate, greatly enhancing the amount of material available for decomposition. Cryo-FIBID has been achieved so far by making use of liquid nitrogen-based cooling circuits, which require the passage of a flowing gas as a cooling agent. Here, the Cryo-FIBID of the W(CO)6 precursor is performed using a coolant-free thermoelectric plate utilizing the Peltier effect. Performed at-60 ºC, the procedure yields a W–C-based material with structural and electrical properties comparable to those of its counterpart grown in coolant-based Cryo-FIBID. The use of the thermoelectric plate significantly reduces the vibrations and sample drift induced by the flow of passing coolant gas and allows for the fabrication of similar nanostructures. In summary, the reported process represents a further step towards the practical implementation of the Cryo-FIBID technique, and it will facilitate its use by a broader research community. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Idioma:
Inglés
DOI:
10.3390/app112110123
Año:
2021
Publicado en:
Applied Sciences (Switzerland)
11, 21 (2021), 10123 [7 pp]
ISSN:
2076-3417
Factor impacto JCR:
2.838 (2021)
Categ. JCR:
PHYSICS, APPLIED
rank: 76 / 161 = 0.472
(2021)
- Q2
- T2
Categ. JCR:
ENGINEERING, MULTIDISCIPLINARY
rank: 39 / 92 = 0.424
(2021)
- Q2
- T2
Categ. JCR:
CHEMISTRY, MULTIDISCIPLINARY
rank: 100 / 179 = 0.559
(2021)
- Q3
- T2
Categ. JCR:
MATERIALS SCIENCE, MULTIDISCIPLINARY
rank: 218 / 344 = 0.634
(2021)
- Q3
- T2
Factor impacto CITESCORE:
3.7 -
Engineering
(Q2) -
Materials Science
(Q2) -
Chemical Engineering
(Q2) -
Computer Science
(Q2) -
Physics and Astronomy
(Q2)
Factor impacto SCIMAGO:
0.507 -
Computer Science Applications
(Q2) -
Engineering (miscellaneous)
(Q2) -
Process Chemistry and Technology
(Q2) -
Materials Science (miscellaneous)
(Q2) -
Fluid Flow and Transfer Processes
(Q2)
Financiación:
info:eu-repo/grantAgreement/ES/DGA/E13-20R
Financiación:
info:eu-repo/grantAgreement/ES/MCIU/PID2020-112914RB-I00
Financiación:
info:eu-repo/grantAgreement/ES/MINECO/MAT2017-82970-C2-1-R
Financiación:
info:eu-repo/grantAgreement/ES/MINECO/MAT2017-82970-C2-2-R
Financiación:
info:eu-repo/grantAgreement/ES/MINECO/MAT2018-102627-T
Tipo y forma:
Artículo (Versión definitiva)
Área (Departamento):
Área Física Materia Condensada
(
Dpto. Física Materia Condensa.
)
Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
Exportado de SIDERAL (2024-03-01-14:39:20)
Enlace permanente:
Copiar
Visitas y descargas
Este artículo se encuentra en las siguientes colecciones:
Artículos
Volver a la búsqueda
Registro creado el 2024-03-01, última modificación el 2024-03-01
Versión publicada:
PDF
Valore este documento:
Rate this document:
1
2
3
4
5
(Sin ninguna reseña)
Añadir a una carpeta personal
Exportar como
BibTeX
,
MARC
,
MARCXML
,
DC
,
EndNote
,
NLM
,
RefWorks