Data Completion, Model Correction and Enrichment Based on Sparse Identification and Data Assimilation
Resumen: Many models assumed to be able to predict the response of structural systems fail to efficiently accomplish that purpose because of two main reasons. First, some structures in operation undergo localized damage that degrades their mechanical performances. To reflect this local loss of performance, the stiffness matrix associated with the structure should be locally corrected. Second, the nominal model is sometimes too coarse grained for reflecting all structural details, and consequently, the predictions are expected to deviate from the measurements. In that case, there is no small region of the model that needs to be repaired, but the entire domain needs to be repaired; therefore, the entire structure-stiffness matrix should be corrected. In the present work, we propose a methodology for locally correcting or globally enriching the models from collected data, which is, upon its turn, completed beyond the sensor''s location. The proposed techniques consist in the first case of an L1-minimization procedure that, with the support of data, aims at the same time period to detect the damaged zone in the structure and to predict the correct solution. For the global enrichment, instead, the methodology consists of an L2-minimization procedure with the support of measurements. The results obtained showed, for the local problem, a correction up to 90% with respect to the initially incorrectly predicted displacement of the structure, and for the global one, a correction up to 60% was observed (this results concern the problems considered in the present study, but they depend on different factors, such as the number of data used, the geometry or the intensity of the damage). The benefits and potential of such techniques are illustrated on four different problems, showing the large generality and adaptability of the methodology.
Idioma: Inglés
DOI: 10.3390/app12157458
Año: 2022
Publicado en: Applied Sciences (Switzerland) 12, 15 (2022), 7458 [20 pp.]
ISSN: 2076-3417

Factor impacto JCR: 2.7 (2022)
Categ. JCR: PHYSICS, APPLIED rank: 78 / 160 = 0.488 (2022) - Q2 - T2
Categ. JCR: ENGINEERING, MULTIDISCIPLINARY rank: 42 / 90 = 0.467 (2022) - Q2 - T2
Categ. JCR: CHEMISTRY, MULTIDISCIPLINARY rank: 100 / 178 = 0.562 (2022) - Q3 - T2
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 208 / 343 = 0.606 (2022) - Q3 - T2

Factor impacto CITESCORE: 4.5 - Engineering (Q2) - Materials Science (Q2) - Chemical Engineering (Q2) - Computer Science (Q2) - Physics and Astronomy (Q2)

Factor impacto SCIMAGO: 0.492 - Fluid Flow and Transfer Processes (Q2) - Materials Science (miscellaneous) (Q2) - Engineering (miscellaneous) (Q2) - Instrumentation (Q2) - Process Chemistry and Technology (Q3) - Computer Science Applications (Q3)

Tipo y forma: Article (Published version)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-03-18-15:31:09)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2024-03-01, last modified 2024-03-19


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)