A local Fourier analysis for additive Schwarz smoothers
Resumen: In this work, a local Fourier analysis is presented to study the convergence of multigrid methods based on additive Schwarz smoothers. This analysis is presented as a general framework which allows us to study these smoothers for any type of discretization and problem. The presented framework is crucial in practice since it allows one to know a priori the answer to questions such as what is the size of the patch to use within these relaxations, the size of the overlap, or even the optimal values for the weights involved in the smoother. Results are shown for a class of additive and restricted additive Schwarz relaxations used within a multigrid framework applied to high-order finite-element discretizations and saddle point problems, which are two of the contexts in which these types of relaxations are widely used.
Idioma: Inglés
DOI: 10.1016/j.camwa.2023.12.039
Año: 2024
Publicado en: COMPUTERS & MATHEMATICS WITH APPLICATIONS 158 (2024), 13-20
ISSN: 0898-1221

Factor impacto JCR: 2.5 (2024)
Categ. JCR: MATHEMATICS, APPLIED rank: 39 / 343 = 0.114 (2024) - Q1 - T1
Factor impacto CITESCORE: 5.0 - Computational Mathematics (Q1) - Modeling and Simulation (Q1) - Computational Theory and Mathematics (Q1)

Factor impacto SCIMAGO: 0.951 - Computational Mathematics (Q1) - Modeling and Simulation (Q1) - Computational Theory and Mathematics (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/E24-17R
Financiación: info:eu-repo/grantAgreement/ES/MCIU/PID2019-105574GB-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2022-140108NB-I00
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)
Exportado de SIDERAL (2026-01-12-12:39:08)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > matematica_aplicada



 Notice créée le 2024-03-01, modifiée le 2026-01-13


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)