000132200 001__ 132200
000132200 005__ 20250923084416.0
000132200 0247_ $$2doi$$a10.1021/acsami.3c16093
000132200 0248_ $$2sideral$$a137347
000132200 037__ $$aART-2024-137347
000132200 041__ $$aeng
000132200 100__ $$0(orcid)0000-0002-0990-0422$$aMartínez-Izquierdo, Lidia
000132200 245__ $$aUltrasmall Functionalized UiO-66 Nanoparticle/Polymer Pebax 1657 Thin-Film Nanocomposite Membranes for Optimal CO2 Separation
000132200 260__ $$c2024
000132200 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132200 5203_ $$aUltrasmall 4 to 6 nm nanoparticles of the metal–organic framework (MOF) UiO-66 (University of Oslo-66) were successfully prepared and embedded into the polymer Pebax 1657 to fabricate thin-film nanocomposite (TFN) membranes for CO2/N2 and CO2/CH4 separations. Furthermore, it has been demonstrated that ligand functionalization with amino (−NH2) and nitro (−NO2) groups significantly enhances the gas separation performance of the membranes. For CO2/N2 separation, 7.5 wt % UiO-66-NH2 nanoparticles provided a 53% improvement in CO2 permeance over the pristine membrane (from 181 to 277 GPU). Regarding the CO2/N2 selectivity, the membranes prepared with 5 wt % UiO-66-NO2 nanoparticles provided an increment of 17% over the membrane without the MOF (from 43.5 to 51.0). However, the CO2 permeance of this membrane dropped to 155 GPU. The addition of 10 wt % ZIF-94 particles with an average particle size of ∼45 nm into the 5 wt % UiO-66-NO2 membrane allowed to increase the CO2 permeance to 192 GPU while maintaining the CO2/N2 selectivity at ca. 51 due to the synergistic interaction between the MOFs and the polymer matrix provided by the hydrophilic nature of ZIF-94. In the case of CO2/CH4 separation, the 7.5 wt % UiO-66-NH2 membrane exhibited the best performance with an increase of the CO2 permeance from 201 to 245 GPU.
000132200 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T68-23R$$9info:eu-repo/grantAgreement/ES/MCIN-AEI/PID2019-104009RB-I00-AEI-10.13039-501100011033$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-130621B-C41
000132200 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000132200 590__ $$a8.2$$b2024
000132200 592__ $$a1.921$$b2024
000132200 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b31 / 147 = 0.211$$c2024$$dQ1$$eT1
000132200 593__ $$aMaterials Science (miscellaneous)$$c2024$$dQ1
000132200 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b83 / 460 = 0.18$$c2024$$dQ1$$eT1
000132200 593__ $$aNanoscience and Nanotechnology$$c2024$$dQ1
000132200 593__ $$aMedicine (miscellaneous)$$c2024$$dQ1
000132200 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000132200 700__ $$aGarcía-Comas, Cristina
000132200 700__ $$aDai, Shan
000132200 700__ $$0(orcid)0000-0001-7702-9619$$aNavarro, Marta
000132200 700__ $$aTissot, Antoine
000132200 700__ $$aSerre, Christian
000132200 700__ $$0(orcid)0000-0002-4954-1188$$aTéllez, Carlos$$uUniversidad de Zaragoza
000132200 700__ $$0(orcid)0000-0003-1512-4500$$aCoronas, Joaquín$$uUniversidad de Zaragoza
000132200 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000132200 773__ $$g16, 3 (2024), 4024-4034$$pACS appl. mater. interfaces$$tACS applied materials & interfaces$$x1944-8244
000132200 8564_ $$s7995039$$uhttps://zaguan.unizar.es/record/132200/files/texto_completo.pdf$$yVersión publicada
000132200 8564_ $$s3188819$$uhttps://zaguan.unizar.es/record/132200/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000132200 909CO $$ooai:zaguan.unizar.es:132200$$particulos$$pdriver
000132200 951__ $$a2025-09-22-14:32:54
000132200 980__ $$aARTICLE