Classification of the Pathological Range of Motion in Low Back Pain Using Wearable Sensors and Machine Learning
Resumen: Low back pain (LBP) is a highly common musculoskeletal condition and the leading cause of work absenteeism. This project aims to develop a medical test to help healthcare professionals decide on and assign physical treatment for patients with nonspecific LBP. The design uses machine learning (ML) models based on the classification of motion capture (MoCap) data obtained from the range of motion (ROM) exercises among healthy and clinically diagnosed patients with LBP from Imbabura–Ecuador. The following seven ML algorithms were tested for evaluation and comparison: logistic regression, decision tree, random forest, support vector machine (SVM), k-nearest neighbor (KNN), multilayer perceptron (MLP), and gradient boosting algorithms. All ML techniques obtained an accuracy above 80%, and three models (SVM, random forest, and MLP) obtained an accuracy of >90%. SVM was found to be the best-performing algorithm. This article aims to improve the applicability of inertial MoCap in healthcare by making use of precise spatiotemporal measurements with a data-driven treatment approach to improve the quality of life of people with chronic LBP.
Idioma: Inglés
DOI: 10.3390/s24030831
Año: 2024
Publicado en: Sensors 24, 3 (2024), 831 [15 pp.]
ISSN: 1424-8220

Factor impacto JCR: 3.5 (2024)
Categ. JCR: CHEMISTRY, ANALYTICAL rank: 38 / 111 = 0.342 (2024) - Q2 - T2
Categ. JCR: INSTRUMENTS & INSTRUMENTATION rank: 24 / 79 = 0.304 (2024) - Q2 - T1
Categ. JCR: ENGINEERING, ELECTRICAL & ELECTRONIC rank: 132 / 366 = 0.361 (2024) - Q2 - T2

Factor impacto SCIMAGO: 0.764 - Instrumentation (Q1) - Analytical Chemistry (Q1) - Medicine (miscellaneous) (Q2) - Information Systems (Q2) - Biochemistry (Q2) - Atomic and Molecular Physics, and Optics (Q2) - Electrical and Electronic Engineering (Q2)

Tipo y forma: Article (Published version)
Área (Departamento): Área Proyectos de Ingeniería (Dpto. Ingeniería Diseño Fabri.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2025-09-22-14:33:43)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Proyectos de Ingeniería



 Record created 2024-03-01, last modified 2025-09-23


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)