Exploring the potential of Physics-Informed Neural Networks to extract vascularization data from DCE-MRI in the presence of diffusion
Financiación H2020 / H2020 Funds
Resumen: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is widely used to assess tissue vascularization, particularly in oncological applications. However, the most widely used pharmacokinetic (PK) models do not account for contrast agent (CA) diffusion between neighboring voxels, which can limit the accuracy of the results, especially in cases of heterogeneous tumors. To address this issue, previous works have proposed algorithms that incorporate diffusion phenomena into the formulation. However, these algorithms often face convergence problems due to the ill-posed nature of the problem. In this work, we present a new approach to fitting DCE-MRI data that incorporates CA diffusion by using Physics-Informed Neural Networks (PINNs). PINNs can be trained to fit measured data obtained from DCE-MRI while ensuring the mass conservation equation from the PK model. We compare the performance of PINNs to previous algorithms on different 1D cases inspired by previous works from literature. Results show that PINNs retrieve vascularization parameters more accurately from diffusion-corrected tracer-kinetic models. Furthermore, we demonstrate the robustness of PINNs compared to other traditional algorithms when faced with noisy or incomplete data. Overall, our results suggest that PINNs can be a valuable tool for improving the accuracy of DCE-MRI data analysis, particularly in cases where CA diffusion plays a significant role.
Idioma: Inglés
DOI: 10.1016/j.medengphy.2023.104092
Año: 2024
Publicado en: MEDICAL ENGINEERING & PHYSICS 123 (2024), 104092 [10 pp.]
ISSN: 1350-4533

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2020-113819RB-I00
Financiación: info:eu-repo/grantAgreement/EC/H2020/101018587/EU/Individual and Collective Migration of the Immune Cellular System/ICoMICS
Financiación: info:eu-repo/grantAgreement/EC/H2020/826494/EU/PRedictive In-silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, Empowered by imaging biomarkers/PRIMAGE
Financiación: info:eu-repo/grantAgreement/ES/MCIU/FPU18/04541
Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI-FEDER/PID2021-122409OB-C21
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PLEC2021-007709/AEI/10.13039/501100011033
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-03-01-14:53:43)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2024-03-01, última modificación el 2024-03-01


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)