Summing Sneddon–Bessel series explicitly
Resumen: We sum in a closed form the Sneddon–Bessel series [fórmula] where 0 < X, 0 < y, x + y < 2, n is an integer, [fórmula] with [fórmula] and [fórmula] are the zeros of the Bessel function [fórmula] of order [fórmula]. In most cases, the explicit expressions for these sums involve hypergeometric functions [fórmula]. As an application, we prove some extensions of the Kneser–Sommerfeld expansion. For instance, we show that [fórmula] if Re v < Re B + 1 and [fórmula](here, Yv denotes the Bessel function of the second kind), which becomes the Kneser–Sommerfeld expansion when B = v.
Idioma: Inglés
DOI: 10.1002/mma.9939
Año: 2024
Publicado en: Mathematical Methods in the Applied Sciences 47, 7 (2024), 6590-6606
ISSN: 0170-4214

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2021-124332NB-C21
Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2021-124332NB-C22
Financiación: info:eu-repo/grantAgreement/ES/DGA/E48-23R
Tipo y forma: Article (Published version)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-07-11-08:52:28)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático



 Record created 2024-03-11, last modified 2024-07-11


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)