Resumen: We sum in a closed form the Sneddon–Bessel series [fórmula] where 0 < X, 0 < y, x + y < 2, n is an integer, [fórmula] with [fórmula] and [fórmula] are the zeros of the Bessel function [fórmula] of order [fórmula]. In most cases, the explicit expressions for these sums involve hypergeometric functions [fórmula]. As an application, we prove some extensions of the Kneser–Sommerfeld expansion. For instance, we show that [fórmula] if Re v < Re B + 1 and [fórmula](here, Yv denotes the Bessel function of the second kind), which becomes the Kneser–Sommerfeld expansion when B = v. Idioma: Inglés DOI: 10.1002/mma.9939 Año: 2024 Publicado en: Mathematical Methods in the Applied Sciences 47, 7 (2024), 6590-6606 ISSN: 0170-4214 Factor impacto JCR: 1.8 (2024) Categ. JCR: MATHEMATICS, APPLIED rank: 78 / 343 = 0.227 (2024) - Q1 - T1 Factor impacto SCIMAGO: 0.63 - Engineering (miscellaneous) (Q1) - Mathematics (miscellaneous) (Q2)