Scanning spin probe based on magnonic vortex quantum cavities
Financiación H2020 / H2020 Funds
Resumen: Performing nanoscale scanning electron paramagnetic resonance (EPR) requires three essential ingredients: First, a static magnetic field together with field gradients to Zeeman split the electronic energy levels with spatial resolution; second, a radio frequency (rf) magnetic field capable of inducing spin transitions; finally, a sensitive detection method to quantify the energy absorbed by spins. This is usually achieved by combining externally applied magnetic fields with inductive coils or cavities, fluorescent defects, or scanning probes. Here, we theoretically propose the realization of an EPR scanning sensor merging all three characteristics into a single device: the vortex core stabilized in ferromagnetic thin-film discs. On one hand, the vortex ground state generates a significant static magnetic field and field gradients. On the other hand, the precessional motion of the vortex core around its equilibrium position produces a circularly polarized oscillating magnetic field, which is enough to produce spin transitions. Finally, the spin–magnon coupling broadens the vortex gyrotropic frequency, suggesting a direct measure of the presence of unpaired electrons. Moreover, the vortex core can be displaced by simply using external magnetic fields of a few mT, enabling EPR scanning microscopy with large spatial resolution. Our numerical simulations show that, by using low damping magnets, it is theoretically possible to detect single spins located on the disc’s surface. Vortex nanocavities could also attain strong coupling to individual spin molecular qubits with potential applications to mediate qubit–qubit interactions or to implement qubit readout protocols.
Idioma: Inglés
DOI: 10.1021/acsnano.3c06704
Año: 2024
Publicado en: ACS NANO 18, 6 (2024), 4717-4725
ISSN: 1936-0851

Factor impacto JCR: 16.0 (2024)
Categ. JCR: CHEMISTRY, PHYSICAL rank: 16 / 185 = 0.086 (2024) - Q1 - T1
Categ. JCR: NANOSCIENCE & NANOTECHNOLOGY rank: 13 / 147 = 0.088 (2024) - Q1 - T1
Categ. JCR: CHEMISTRY, MULTIDISCIPLINARY rank: 16 / 239 = 0.067 (2024) - Q1 - T1
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 28 / 460 = 0.061 (2024) - Q1 - T1

Factor impacto SCIMAGO: 4.497 - Engineering (miscellaneous) (Q1) - Physics and Astronomy (miscellaneous) (Q1) - Nanoscience and Nanotechnology (Q1) - Materials Science (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/CSIC/PTI-001
Financiación: info:eu-repo/grantAgreement/ES/DGA/E09-23R
Financiación: info:eu-repo/grantAgreement/EC/H2020/948986/EU/Quantum Fast Spin dynamics addressed by High-Tc superconducting circuits/QFAST
Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2020-115221GB-C41
Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI/PRTR-C17.I1
Financiación: info:eu-repo/grantAgreement/ES/MICINN/EUR2019-103823
Financiación: info:eu-repo/grantAgreement/ES/MICINN/RTI2018-096075-B-C21
Financiación: info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131447B-C21
Tipo y forma: Article (Published version)
Exportado de SIDERAL (2025-09-22-14:31:33)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos



 Notice créée le 2024-03-11, modifiée le 2025-09-23


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)