Total positivity and high relative accuracy for several classes of Hankel matrices

Mainar, E. (Universidad de Zaragoza) ; Peña, J. M. (Universidad de Zaragoza) ; Rubio, B. (Universidad de Zaragoza)
Total positivity and high relative accuracy for several classes of Hankel matrices
Resumen: Gramian matrices with respect to inner products defined for Hilbert spaces supported on bounded and unbounded intervals are represented through a bidiagonal factorization. It is proved that the considered matrices are strictly totally positive Hankel matrices and their catalecticant determinants are also calculated. Using the proposed representation, the numerical resolution of linear algebra problems with these matrices can be achieved to high relative accuracy. Numerical experiments are provided, and they illustrate the excellent results obtained when applying the theoretical results.
Idioma: Inglés
DOI: 10.1002/nla.2550
Año: 2024
Publicado en: NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS 31, 4 (2024), e2550 [21 pp.]
ISSN: 1070-5325

Factor impacto JCR: 2.1 (2024)
Categ. JCR: MATHEMATICS, APPLIED rank: 57 / 343 = 0.166 (2024) - Q1 - T1
Categ. JCR: MATHEMATICS rank: 31 / 483 = 0.064 (2024) - Q1 - T1

Factor impacto SCIMAGO: 0.757 - Algebra and Number Theory (Q1) - Applied Mathematics (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E41-23R
Financiación: info:eu-repo/grantAgreement/ES/MCIU/PID2022-138569NB-I00
Financiación: info:eu-repo/grantAgreement/ES/MCIU/RED2022-134176-T
Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)
Exportado de SIDERAL (2025-09-22-14:32:51)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > matematica_aplicada



 Notice créée le 2024-03-15, modifiée le 2025-09-23


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)