Short (SL2 x SL2)-structures on Lie algebras
Resumen: S-structures on Lie algebras, introduced by Vinberg, represent a broad generalization of the notion of gradings by abelian groups. Gradings by, not necessarily reduced, root systems provide many examples of natural S-structures. Here we deal with a situation not covered by these gradings: the short (SL2xSL2)-structures, where the reductive group is the simplest semisimple but not simple reductive group. The algebraic objects that coordinatize these structures are the J-ternary algebras of Allison, endowed with a nontrivial idempotent.
Idioma: Inglés
DOI: 10.1007/s13398-023-01541-4
Año: 2024
Publicado en: Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas 118 (2024), 45 [21 pp.]
ISSN: 1578-7303

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2021-123461NB-C22
Financiación: info:eu-repo/grantAgreement/ES/DGA/E22-20R
Financiación: info:eu-repo/grantAgreement/ES/DGA/S60-20R
Financiación: info:eu-repo/grantAgreement/ES/MCINN/PID2021-123461NB-C21
Tipo y forma: Article (Published version)
Área (Departamento): Área Algebra (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-03-22-09:47:37)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Álgebra



 Record created 2024-03-22, last modified 2024-03-22


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)