Green photocatalytic mixed matrix membranes for simultaneous arsenic photo-oxidation and water recovery via membrane distillation
Financiación H2020 / H2020 Funds
Resumen: This work proposes an innovative integration of Membrane Distillation (MD) and photo-oxidation for a continuous recovery of water from arsenic (As) contaminated solutions coupled with the oxidation of arsenite (As(III)) into arsenate (As(V)). Polyvinylidene fluoride (PVDF) mixed matrix membranes (MMMs) containing titanium dioxide nanoparticles (TiO2 NPs) as photocatalyst were developed. A systematic study elucidated the effect of TiO2 NPs on membranes’ morphology prepared via non-solvent-induced phase separation (NIPS) using triethyl phosphate (TEP) as a green solvent for PVDF solubilization. Vacuum membrane distillation (VMD) tests carried out by irradiating the MMMs with ultraviolet (UV) radiation demonstrated the possibility of recovering up to 80 % of the water from As-contaminated synthetic and real multi-ions aqueous solutions from Sila Massif (Italy). The distillate was recovered at a rate of 6.9–7.2 kg·m−2·h−1 (feed inlet temperature of 60 °C), while the presence of 7 wt% of TiO2 in PVDF membranes enabled the photo-oxidation of 95 % of the As(III) to As(V) at a first order kinetic constant of 0.0106 min−1. After 5 cycles of As-remediation experiments, post-hoc mechanical testing on the membrane suggested the emergence of polymer embrittlement induced by UV radiation (total irradiation time of 7.5 h), highlighting the urgent need for developing photocatalytic membranes with long-term stability.
Overall, this study elucidates at laboratory scale the performance of a coupled and continuous Membrane Distillation (MD) and photo-oxidation system for arsenic (As) remediation, employing microporous hydrophobic green membranes doped with a photocatalyst.

Idioma: Inglés
DOI: 10.1016/j.seppur.2024.127042
Año: 2024
Publicado en: Separation and Purification Technology 342 (2024), 127042 [11 pp.]
ISSN: 1383-5866

Financiación: info:eu-repo/grantAgreement/EC/H2020/823948/EU/Renewable Energies for Water Treatment and REuse in Mining Industries/REMIND
Tipo y forma: Article (Published version)
Área (Departamento): Área Ingeniería Química (Dpto. Ing.Quím.Tecnol.Med.Amb.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-04-10-08:38:57)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Ingeniería Química



 Record created 2024-04-10, last modified 2024-04-10


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)