Resumen: In this work, block checkerboard sign pattern matrices are introduced and analyzed. They satisfy the generalized Perron–Frobenius theorem. We study the case related to total positive matrices in order to guarantee bidiagonal decompositions and some linear algebra computations with high relative accuracy. A result on intervals of checkerboard matrices is included. Some numerical examples illustrate the theoretical results. Idioma: Inglés DOI: 10.3390/math12060853 Año: 2024 Publicado en: Mathematics 12, 6 (2024), 853 [13 pp.] ISSN: 2227-7390 Factor impacto JCR: 2.2 (2024) Categ. JCR: MATHEMATICS rank: 29 / 483 = 0.06 (2024) - Q1 - T1 Factor impacto SCIMAGO: 0.498 - Engineering (miscellaneous) (Q2) - Mathematics (miscellaneous) (Q2) - Computer Science (miscellaneous) (Q2)