A non-stressful vision-based method for weighing live lambs
Resumen: Accurate measurement of livestock weight is a primary indicator in the meat industry to increase the economic gain. In lambs, the weight of a live animal is still usually estimated manually using traditional scales, resulting in a tedious process for the experienced assessor and stressful for the animal. In this paper, we propose a solution to this problem using computer vision techniques; thus, the proposed procedure estimates the weight of a lamb by analysing its zenithal image without interacting with the animal, which speeds up the process and reduces weighing costs. It is based on a data-driven decision support system that uses RGB-D machine vision techniques and regression models. Unlike existing methods, it does not require walk-over-weighing platforms or special and expensive infrastructures. The proposed method includes a decision support system that automatically rejects those images that are not appropriate to estimate the lamb weight. After determining the body contour of the lamb, we compute several features that feed different regression models. Best results were achieved with Extra Tree Regression ($R^{2}$=91.94%), outperforming the existing techniques. Using only an image, the proposed approach can identify with a minimum error the optimal weight of a lamb to be slaughtered, so as to maximise the economic profit.
Idioma: Inglés
DOI: 10.1093/jigpal/jzae059
Año: 2024
Publicado en: Logic Journal of the IGPL (2024), [13 pp.]
ISSN: 1367-0751

Financiación: info:eu-repo/grantAgreement/ES/AEI/TED2021-132356B-I00
Financiación: info:eu-repo/grantAgreement/ES/DGA/GCP-2017-2700
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Proyectos de Ingeniería (Dpto. Ingeniería Diseño Fabri.)

Derechos Reservados Derechos reservados por el editor de la revista


Exportado de SIDERAL (2024-06-19-13:22:57)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2024-06-19, última modificación el 2024-06-19


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)