The discrete new XLindley distribution and the associated autoregressive process
Resumen: The continuous new XLindley distribution was introduced by Nawel et al. (IEEE Access 11:67220–67229, 2023) as a special case of the polynomial exponential distribution proposed by Beghriche et al. (Statist Transit New Ser 23:95–112, 2022). The current paper introduces the one-parameter discrete analogue distribution of the new XLindley model and studies its main statistical properties. In particular, closed-form expressions are provided for the moment-generating function, mean, variance, quantile function, hazard rate function and mean residual life. Moreover, the new distribution has discrete increasing failure rate and both overdispersed and underdispersed count data can be handled. The estimation of the unknown parameter can be performed by the maximum likelihood method, and a Monte Carlo simulation study reveals that this method provides satisfactory estimates. Additionally, a first-order integer-valued autoregressive process is constructed from the discrete distribution and, via a simulation study, the conditional maximum likelihood method is recommended for estimation purposes. In order to assess the usefulness in practical applications, the proposed distribution and the associated first-order autoregressive process are compared to other competing distributions and processes, using this end several real data sets. In the context of statistical quality control, finally a cumulative sum control chart is developed for monitoring the process mean. To illustrate its usefulness, both simulation and real data analysis are performed.
Idioma: Inglés
DOI: 10.1007/s41060-024-00563-4
Año: 2024
Publicado en: International Journal of Data Science and Analytics (2024), [27 pp.]
ISSN: 2364-415X

Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Estadís. Investig. Opera. (Dpto. Métodos Estadísticos)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Fecha de embargo : 2025-05-24
Exportado de SIDERAL (2024-07-05-12:56:05)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2024-07-04, última modificación el 2024-07-05


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)